超字符理论通过群行列式

Shawn T. Burkett
{"title":"超字符理论通过群行列式","authors":"Shawn T. Burkett","doi":"10.1216/rmj.2021.51.447","DOIUrl":null,"url":null,"abstract":"Ferdinand Georg Frobenius is generally considered the creator of character theory of finite groups. This achievement came from the study of the group determinant, which is the determinant of a matrix coming from the regular representation. In this paper, we generalize several of Frobenius' results about the group determinant and use them find a new formulation of supercharacter theory in terms of factorizations of the group determinant.","PeriodicalId":275006,"journal":{"name":"arXiv: Representation Theory","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Supercharacter theory via the group determinant\",\"authors\":\"Shawn T. Burkett\",\"doi\":\"10.1216/rmj.2021.51.447\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ferdinand Georg Frobenius is generally considered the creator of character theory of finite groups. This achievement came from the study of the group determinant, which is the determinant of a matrix coming from the regular representation. In this paper, we generalize several of Frobenius' results about the group determinant and use them find a new formulation of supercharacter theory in terms of factorizations of the group determinant.\",\"PeriodicalId\":275006,\"journal\":{\"name\":\"arXiv: Representation Theory\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Representation Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1216/rmj.2021.51.447\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Representation Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1216/rmj.2021.51.447","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

费迪南德·格奥尔格·弗罗贝尼乌斯通常被认为是有限群特征理论的创造者。这一成果来自对群行列式的研究,群行列式是矩阵的行列式,来自正则表示。本文推广了Frobenius关于群行列式的几个结果,并利用这些结果找到了关于群行列式分解的超特征理论的新表述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Supercharacter theory via the group determinant
Ferdinand Georg Frobenius is generally considered the creator of character theory of finite groups. This achievement came from the study of the group determinant, which is the determinant of a matrix coming from the regular representation. In this paper, we generalize several of Frobenius' results about the group determinant and use them find a new formulation of supercharacter theory in terms of factorizations of the group determinant.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信