基于耦合概率转移的图像标签重排序

Jie Xiao, Wen-gang Zhou, Xia Li, Meng Wang, Q. Tian
{"title":"基于耦合概率转移的图像标签重排序","authors":"Jie Xiao, Wen-gang Zhou, Xia Li, Meng Wang, Q. Tian","doi":"10.1145/2393347.2396328","DOIUrl":null,"url":null,"abstract":"The large amount of user-tagged images on social networks is helpful to facilitate image management and image search. However, many tags are weakly relevant or irrelevant to the visual content, resulting in unsatisfactory performance in tag related applications. In this paper, we propose a coupled probability transition algorithm to estimate the text-visual group relevance from the observed data and then leverage it to predict tag relevance for a new query image. The visual group for a given tag is a cluster of images that are visually similar and share the same tag. The tag-visual group relevance is uncovered by exploiting the mutual reinforcement in visual space and semantic space alternatively. Experiments on NUS-WIDE dataset show the validity and superiority of the proposed approach over existing methods.","PeriodicalId":212654,"journal":{"name":"Proceedings of the 20th ACM international conference on Multimedia","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Image tag re-ranking by coupled probability transition\",\"authors\":\"Jie Xiao, Wen-gang Zhou, Xia Li, Meng Wang, Q. Tian\",\"doi\":\"10.1145/2393347.2396328\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The large amount of user-tagged images on social networks is helpful to facilitate image management and image search. However, many tags are weakly relevant or irrelevant to the visual content, resulting in unsatisfactory performance in tag related applications. In this paper, we propose a coupled probability transition algorithm to estimate the text-visual group relevance from the observed data and then leverage it to predict tag relevance for a new query image. The visual group for a given tag is a cluster of images that are visually similar and share the same tag. The tag-visual group relevance is uncovered by exploiting the mutual reinforcement in visual space and semantic space alternatively. Experiments on NUS-WIDE dataset show the validity and superiority of the proposed approach over existing methods.\",\"PeriodicalId\":212654,\"journal\":{\"name\":\"Proceedings of the 20th ACM international conference on Multimedia\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 20th ACM international conference on Multimedia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2393347.2396328\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 20th ACM international conference on Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2393347.2396328","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

社交网络上大量的用户标记图像有助于方便图像管理和图像搜索。然而,许多标签与视觉内容的相关性很弱或不相关,导致与标签相关的应用程序的性能不理想。在本文中,我们提出了一种耦合概率转移算法,从观察到的数据中估计文本-视觉组相关性,然后利用它来预测新的查询图像的标签相关性。给定标签的视觉组是一组视觉上相似且共享相同标签的图像。标签-视觉组关联是通过交替利用视觉空间和语义空间的相互强化来揭示的。在NUS-WIDE数据集上的实验表明了该方法的有效性和优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Image tag re-ranking by coupled probability transition
The large amount of user-tagged images on social networks is helpful to facilitate image management and image search. However, many tags are weakly relevant or irrelevant to the visual content, resulting in unsatisfactory performance in tag related applications. In this paper, we propose a coupled probability transition algorithm to estimate the text-visual group relevance from the observed data and then leverage it to predict tag relevance for a new query image. The visual group for a given tag is a cluster of images that are visually similar and share the same tag. The tag-visual group relevance is uncovered by exploiting the mutual reinforcement in visual space and semantic space alternatively. Experiments on NUS-WIDE dataset show the validity and superiority of the proposed approach over existing methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信