基于卷积神经网络的立体视频信道失配检测算法

S. Lavrushkin, D. Vatolin
{"title":"基于卷积神经网络的立体视频信道失配检测算法","authors":"S. Lavrushkin, D. Vatolin","doi":"10.1109/3DTV.2018.8478542","DOIUrl":null,"url":null,"abstract":"Channel mismatch (the result of swapping left and right views) is a 3D-video artifact that can cause major viewer discomfort. This work presents a novel high-accuracy method of channel-mismatch detection. In addition to the features described in our previous work, we introduce a new feature based on a convolutional neural network; it predicts channel-mismatch probability on the basis of the stereoscopic views and corresponding disparity maps. A logistic-regression model trained on the described features makes the final prediction. We tested this model on a set of 900 stereoscopic-video scenes, and it outperformed existing channel-mismatch detection methods that previously served in analyses of full-length stereoscopic movies.","PeriodicalId":267389,"journal":{"name":"2018 - 3DTV-Conference: The True Vision - Capture, Transmission and Display of 3D Video (3DTV-CON)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"CHANNEL-MISMATCH DETECTION ALGORITHM FOR STEREOSCOPIC VIDEO USING CONVOLUTIONAL NEURAL NETWORK\",\"authors\":\"S. Lavrushkin, D. Vatolin\",\"doi\":\"10.1109/3DTV.2018.8478542\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Channel mismatch (the result of swapping left and right views) is a 3D-video artifact that can cause major viewer discomfort. This work presents a novel high-accuracy method of channel-mismatch detection. In addition to the features described in our previous work, we introduce a new feature based on a convolutional neural network; it predicts channel-mismatch probability on the basis of the stereoscopic views and corresponding disparity maps. A logistic-regression model trained on the described features makes the final prediction. We tested this model on a set of 900 stereoscopic-video scenes, and it outperformed existing channel-mismatch detection methods that previously served in analyses of full-length stereoscopic movies.\",\"PeriodicalId\":267389,\"journal\":{\"name\":\"2018 - 3DTV-Conference: The True Vision - Capture, Transmission and Display of 3D Video (3DTV-CON)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 - 3DTV-Conference: The True Vision - Capture, Transmission and Display of 3D Video (3DTV-CON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/3DTV.2018.8478542\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 - 3DTV-Conference: The True Vision - Capture, Transmission and Display of 3D Video (3DTV-CON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/3DTV.2018.8478542","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

通道不匹配(交换左视图和右视图的结果)是一个3d视频工件,可能会导致主要的观众不舒服。本文提出了一种新的高精度信道失配检测方法。除了我们之前工作中描述的特征之外,我们还引入了一个基于卷积神经网络的新特征;它根据立体视图和相应的视差图预测信道失配概率。对所描述的特征进行训练的逻辑回归模型进行最终预测。我们在一组900个立体视频场景上测试了这个模型,它优于现有的用于分析全长立体电影的频道不匹配检测方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CHANNEL-MISMATCH DETECTION ALGORITHM FOR STEREOSCOPIC VIDEO USING CONVOLUTIONAL NEURAL NETWORK
Channel mismatch (the result of swapping left and right views) is a 3D-video artifact that can cause major viewer discomfort. This work presents a novel high-accuracy method of channel-mismatch detection. In addition to the features described in our previous work, we introduce a new feature based on a convolutional neural network; it predicts channel-mismatch probability on the basis of the stereoscopic views and corresponding disparity maps. A logistic-regression model trained on the described features makes the final prediction. We tested this model on a set of 900 stereoscopic-video scenes, and it outperformed existing channel-mismatch detection methods that previously served in analyses of full-length stereoscopic movies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信