调和曲率的最大弯曲度规

A. Derdzinski, P. Piccione
{"title":"调和曲率的最大弯曲度规","authors":"A. Derdzinski, P. Piccione","doi":"10.1090/conm/756/15198","DOIUrl":null,"url":null,"abstract":"We describe the local structure of Riemannian manifolds with harmonic curvature which admit a maximum number, in a well-defined sense, of local warped-product decompositions, and at the same time their Ricci tensor has, at some point, only simple eigenvalues. We also prove that in every given dimension greater than two the local-isometry types of such manifolds form a finite-dimensional moduli space, and a nonempty open subset of this moduli space is realized by complete metrics.","PeriodicalId":165273,"journal":{"name":"Geometry of Submanifolds","volume":"103 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Maximally-warped metrics with harmonic\\n curvature\",\"authors\":\"A. Derdzinski, P. Piccione\",\"doi\":\"10.1090/conm/756/15198\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe the local structure of Riemannian manifolds with harmonic curvature which admit a maximum number, in a well-defined sense, of local warped-product decompositions, and at the same time their Ricci tensor has, at some point, only simple eigenvalues. We also prove that in every given dimension greater than two the local-isometry types of such manifolds form a finite-dimensional moduli space, and a nonempty open subset of this moduli space is realized by complete metrics.\",\"PeriodicalId\":165273,\"journal\":{\"name\":\"Geometry of Submanifolds\",\"volume\":\"103 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geometry of Submanifolds\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/conm/756/15198\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometry of Submanifolds","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/conm/756/15198","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们描述具有调和曲率的黎曼流形的局部结构,这些流形在一个明确定义的意义上允许最大数量的局部弯曲积分解,同时它们的里奇张量在某一点上只有简单特征值。我们还证明了在每一个大于2维的给定维度上,这些流形的局部等距型形成了一个有限维模空间,并且这个模空间的一个非空开子集是由完全度量实现的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Maximally-warped metrics with harmonic curvature
We describe the local structure of Riemannian manifolds with harmonic curvature which admit a maximum number, in a well-defined sense, of local warped-product decompositions, and at the same time their Ricci tensor has, at some point, only simple eigenvalues. We also prove that in every given dimension greater than two the local-isometry types of such manifolds form a finite-dimensional moduli space, and a nonempty open subset of this moduli space is realized by complete metrics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信