约束条件下的盲识别问题

A. Cichocki, P. Georgiev
{"title":"约束条件下的盲识别问题","authors":"A. Cichocki, P. Georgiev","doi":"10.1109/NNSP.2002.1030065","DOIUrl":null,"url":null,"abstract":"In many applications of independent component analysis (ICA) and blind source separation (BSS) the mixing or separating matrices have some special structure or some constraints are imposed for the matrices like symmetry, orthogonality, nonnegativity, sparseness and unit (or specified invariant norm) of the matrix. We present several algorithms and overview some known transformations which allows us to preserve such constraints. Especially, we propose algorithms for a blind identification problem with non-negativity constraints.","PeriodicalId":117945,"journal":{"name":"Proceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Blind identification problems with constraints\",\"authors\":\"A. Cichocki, P. Georgiev\",\"doi\":\"10.1109/NNSP.2002.1030065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In many applications of independent component analysis (ICA) and blind source separation (BSS) the mixing or separating matrices have some special structure or some constraints are imposed for the matrices like symmetry, orthogonality, nonnegativity, sparseness and unit (or specified invariant norm) of the matrix. We present several algorithms and overview some known transformations which allows us to preserve such constraints. Especially, we propose algorithms for a blind identification problem with non-negativity constraints.\",\"PeriodicalId\":117945,\"journal\":{\"name\":\"Proceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NNSP.2002.1030065\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NNSP.2002.1030065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在独立分量分析(ICA)和盲源分离(BSS)的许多应用中,混合或分离矩阵具有一些特殊的结构或对矩阵的对称性、正交性、非负性、稀疏性和矩阵的单位(或指定不变范数)等约束。我们提出了几种算法,并概述了一些允许我们保留这些约束的已知转换。特别地,我们提出了非负性约束下的盲识别问题的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Blind identification problems with constraints
In many applications of independent component analysis (ICA) and blind source separation (BSS) the mixing or separating matrices have some special structure or some constraints are imposed for the matrices like symmetry, orthogonality, nonnegativity, sparseness and unit (or specified invariant norm) of the matrix. We present several algorithms and overview some known transformations which allows us to preserve such constraints. Especially, we propose algorithms for a blind identification problem with non-negativity constraints.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信