稀疏激光雷达数据分割的连通分量标记算法

A. Ravankar, Yukinori Kobayashi, Ankit A. Ravankar, T. Emaru
{"title":"稀疏激光雷达数据分割的连通分量标记算法","authors":"A. Ravankar, Yukinori Kobayashi, Ankit A. Ravankar, T. Emaru","doi":"10.1109/ICARA.2015.7081188","DOIUrl":null,"url":null,"abstract":"This paper proposes an extended connected-components labeling algorithm for sparse Lidar (Light detection and ranging) sensor data. It is difficult to label sparse Lidar data using the general connected-component labeling algorithm. The proposed technique first increases the density of the sparse data by performing mathematical morphological operation of dilation. Next, labeling is performed on the dilated data, and the resultant labels are mapped to the input sparse Lidar data. The proposed technique does not distort the input Lidar data. We show the application of the proposed algorithm in map building using clustering. Results show that the proposed method can label sparse Lidar data to build maps.","PeriodicalId":176657,"journal":{"name":"2015 6th International Conference on Automation, Robotics and Applications (ICARA)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"A connected component labeling algorithm for sparse Lidar data segmentation\",\"authors\":\"A. Ravankar, Yukinori Kobayashi, Ankit A. Ravankar, T. Emaru\",\"doi\":\"10.1109/ICARA.2015.7081188\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes an extended connected-components labeling algorithm for sparse Lidar (Light detection and ranging) sensor data. It is difficult to label sparse Lidar data using the general connected-component labeling algorithm. The proposed technique first increases the density of the sparse data by performing mathematical morphological operation of dilation. Next, labeling is performed on the dilated data, and the resultant labels are mapped to the input sparse Lidar data. The proposed technique does not distort the input Lidar data. We show the application of the proposed algorithm in map building using clustering. Results show that the proposed method can label sparse Lidar data to build maps.\",\"PeriodicalId\":176657,\"journal\":{\"name\":\"2015 6th International Conference on Automation, Robotics and Applications (ICARA)\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 6th International Conference on Automation, Robotics and Applications (ICARA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICARA.2015.7081188\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 6th International Conference on Automation, Robotics and Applications (ICARA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICARA.2015.7081188","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

提出了一种稀疏激光雷达(Light detection and ranging)传感器数据的扩展连通分量标记算法。使用一般的连通分量标记算法难以对稀疏激光雷达数据进行标记。该方法首先通过对稀疏数据进行数学形态学运算来增加稀疏数据的密度。接下来,对扩展后的数据进行标记,并将结果标签映射到输入的稀疏激光雷达数据。该技术不会使输入的激光雷达数据失真。我们展示了该算法在基于聚类的地图构建中的应用。实验结果表明,该方法可以对稀疏的激光雷达数据进行标记,从而建立地图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A connected component labeling algorithm for sparse Lidar data segmentation
This paper proposes an extended connected-components labeling algorithm for sparse Lidar (Light detection and ranging) sensor data. It is difficult to label sparse Lidar data using the general connected-component labeling algorithm. The proposed technique first increases the density of the sparse data by performing mathematical morphological operation of dilation. Next, labeling is performed on the dilated data, and the resultant labels are mapped to the input sparse Lidar data. The proposed technique does not distort the input Lidar data. We show the application of the proposed algorithm in map building using clustering. Results show that the proposed method can label sparse Lidar data to build maps.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信