{"title":"基于多行缓冲的基于中值的动态背景减法的高级综合开发高性能硬件*","authors":"Kohei Shinyamada, A. Yamawaki","doi":"10.1109/TENCON54134.2021.9707206","DOIUrl":null,"url":null,"abstract":"Hardware processing is suitable for embedded image processing systems because of its lower power consumption and higher performance compared to software processing. To facilitate development, a tool called high-level synthesis, which automatically converts high-level languages into hardware description languages, is used. However, high-level synthesis of pure software does not necessarily generate efficient hardware. In this study, we attempted to generate high-performance image processing hardware using a median-based dynamic background subtraction method. As a result, we found that high-performance hardware can be generated when multiple line buffers are introduced. Compared to the non-introduced one, the performance was improved by about 13 times.","PeriodicalId":405859,"journal":{"name":"TENCON 2021 - 2021 IEEE Region 10 Conference (TENCON)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Development of High Performance Hardware by High-Level Synthesis of Median-Based Dynamic Background Subtraction Method with Multiple Line Buffers*\",\"authors\":\"Kohei Shinyamada, A. Yamawaki\",\"doi\":\"10.1109/TENCON54134.2021.9707206\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hardware processing is suitable for embedded image processing systems because of its lower power consumption and higher performance compared to software processing. To facilitate development, a tool called high-level synthesis, which automatically converts high-level languages into hardware description languages, is used. However, high-level synthesis of pure software does not necessarily generate efficient hardware. In this study, we attempted to generate high-performance image processing hardware using a median-based dynamic background subtraction method. As a result, we found that high-performance hardware can be generated when multiple line buffers are introduced. Compared to the non-introduced one, the performance was improved by about 13 times.\",\"PeriodicalId\":405859,\"journal\":{\"name\":\"TENCON 2021 - 2021 IEEE Region 10 Conference (TENCON)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"TENCON 2021 - 2021 IEEE Region 10 Conference (TENCON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TENCON54134.2021.9707206\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"TENCON 2021 - 2021 IEEE Region 10 Conference (TENCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TENCON54134.2021.9707206","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Development of High Performance Hardware by High-Level Synthesis of Median-Based Dynamic Background Subtraction Method with Multiple Line Buffers*
Hardware processing is suitable for embedded image processing systems because of its lower power consumption and higher performance compared to software processing. To facilitate development, a tool called high-level synthesis, which automatically converts high-level languages into hardware description languages, is used. However, high-level synthesis of pure software does not necessarily generate efficient hardware. In this study, we attempted to generate high-performance image processing hardware using a median-based dynamic background subtraction method. As a result, we found that high-performance hardware can be generated when multiple line buffers are introduced. Compared to the non-introduced one, the performance was improved by about 13 times.