深度学习在跌倒检测中的姿态分析

P. Feng, Miao Yu, S. M. Naqvi, J. Chambers
{"title":"深度学习在跌倒检测中的姿态分析","authors":"P. Feng, Miao Yu, S. M. Naqvi, J. Chambers","doi":"10.1109/ICDSP.2014.6900806","DOIUrl":null,"url":null,"abstract":"We propose a novel computer vision based fall detection system using deep learning methods to analyse the postures in a smart home environment for detecting fall activities. Firstly, background subtraction is employed to extract the foreground human body. Then the binary human body images form the input to the classifier. Two deep learning approaches based on a Boltzmann machine and deep belief network are compared with a support vector machine approach. The final decision on the occurrence of a fall is made on the basis of combining the classifier output with certain contextual rules. Evaluations are performed on recordings from a real home care environment, in which 15 people create 2904 postures.","PeriodicalId":301856,"journal":{"name":"2014 19th International Conference on Digital Signal Processing","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"42","resultStr":"{\"title\":\"Deep learning for posture analysis in fall detection\",\"authors\":\"P. Feng, Miao Yu, S. M. Naqvi, J. Chambers\",\"doi\":\"10.1109/ICDSP.2014.6900806\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a novel computer vision based fall detection system using deep learning methods to analyse the postures in a smart home environment for detecting fall activities. Firstly, background subtraction is employed to extract the foreground human body. Then the binary human body images form the input to the classifier. Two deep learning approaches based on a Boltzmann machine and deep belief network are compared with a support vector machine approach. The final decision on the occurrence of a fall is made on the basis of combining the classifier output with certain contextual rules. Evaluations are performed on recordings from a real home care environment, in which 15 people create 2904 postures.\",\"PeriodicalId\":301856,\"journal\":{\"name\":\"2014 19th International Conference on Digital Signal Processing\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"42\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 19th International Conference on Digital Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDSP.2014.6900806\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 19th International Conference on Digital Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDSP.2014.6900806","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 42

摘要

我们提出了一种新的基于计算机视觉的跌倒检测系统,该系统使用深度学习方法来分析智能家居环境中的姿势,以检测跌倒活动。首先,采用背景减法提取前景人体;然后将二值人体图像作为分类器的输入。将基于玻尔兹曼机和深度信念网络的两种深度学习方法与支持向量机方法进行了比较。在将分类器输出与某些上下文规则相结合的基础上,对是否发生坠落做出最终决定。评估是在一个真实的家庭护理环境中进行的,在这个环境中,15个人创造了2904个姿势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep learning for posture analysis in fall detection
We propose a novel computer vision based fall detection system using deep learning methods to analyse the postures in a smart home environment for detecting fall activities. Firstly, background subtraction is employed to extract the foreground human body. Then the binary human body images form the input to the classifier. Two deep learning approaches based on a Boltzmann machine and deep belief network are compared with a support vector machine approach. The final decision on the occurrence of a fall is made on the basis of combining the classifier output with certain contextual rules. Evaluations are performed on recordings from a real home care environment, in which 15 people create 2904 postures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信