基于区域特征空间的视频目标检索

Wei Feng, Yingqing Xu, R. Zhao
{"title":"基于区域特征空间的视频目标检索","authors":"Wei Feng, Yingqing Xu, R. Zhao","doi":"10.1109/ICNNSP.2003.1281095","DOIUrl":null,"url":null,"abstract":"A new robust target retrieval method in video is presented in this paper. The proposed approach uses spatio-temporal analysis to segment video in space-time domain. Then, a region feature space is defined according to the segment result, in which selected or given objects can be retrieved automatically in successive frames through local motion estimation. Various experiments show our algorithm is robust to partial occlusion, out-of-plane rotation and great relative movement among targets, scene and camera.","PeriodicalId":336216,"journal":{"name":"International Conference on Neural Networks and Signal Processing, 2003. Proceedings of the 2003","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Region feature space based target retrieval in video\",\"authors\":\"Wei Feng, Yingqing Xu, R. Zhao\",\"doi\":\"10.1109/ICNNSP.2003.1281095\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new robust target retrieval method in video is presented in this paper. The proposed approach uses spatio-temporal analysis to segment video in space-time domain. Then, a region feature space is defined according to the segment result, in which selected or given objects can be retrieved automatically in successive frames through local motion estimation. Various experiments show our algorithm is robust to partial occlusion, out-of-plane rotation and great relative movement among targets, scene and camera.\",\"PeriodicalId\":336216,\"journal\":{\"name\":\"International Conference on Neural Networks and Signal Processing, 2003. Proceedings of the 2003\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Neural Networks and Signal Processing, 2003. Proceedings of the 2003\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNNSP.2003.1281095\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Neural Networks and Signal Processing, 2003. Proceedings of the 2003","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNNSP.2003.1281095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种新的视频鲁棒目标检索方法。该方法利用时空分析方法在时空域对视频进行分割。然后,根据分割结果定义区域特征空间,通过局部运动估计在连续帧中自动检索选定或给定的目标。实验结果表明,该算法对目标、场景和摄像机之间的部分遮挡、面外旋转和较大的相对运动具有较好的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Region feature space based target retrieval in video
A new robust target retrieval method in video is presented in this paper. The proposed approach uses spatio-temporal analysis to segment video in space-time domain. Then, a region feature space is defined according to the segment result, in which selected or given objects can be retrieved automatically in successive frames through local motion estimation. Various experiments show our algorithm is robust to partial occlusion, out-of-plane rotation and great relative movement among targets, scene and camera.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信