城市图像检索中的局部特征选择

Nicolas Hascoët, T. Zaharia
{"title":"城市图像检索中的局部特征选择","authors":"Nicolas Hascoët, T. Zaharia","doi":"10.1109/ISSCS.2017.8034887","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an improved image retrieval method, dedicated to images of buildings/landmarks from urban environments. Locally detected key points are binary labelled as building or no-building using a SVM-based classifier. Thereafter, only key points labelled as building are retained. In this way, the data in the database vocabulary is reduced to only the relevant one and solely the relevant features, effectively describing the targeted buildings are considered. The experimental results, carried out on the Paris6k and Oxford5k data sets show significant improvement in terms of retrieval precision.","PeriodicalId":338255,"journal":{"name":"2017 International Symposium on Signals, Circuits and Systems (ISSCS)","volume":"108 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Local feature selection for urban image retrieval\",\"authors\":\"Nicolas Hascoët, T. Zaharia\",\"doi\":\"10.1109/ISSCS.2017.8034887\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose an improved image retrieval method, dedicated to images of buildings/landmarks from urban environments. Locally detected key points are binary labelled as building or no-building using a SVM-based classifier. Thereafter, only key points labelled as building are retained. In this way, the data in the database vocabulary is reduced to only the relevant one and solely the relevant features, effectively describing the targeted buildings are considered. The experimental results, carried out on the Paris6k and Oxford5k data sets show significant improvement in terms of retrieval precision.\",\"PeriodicalId\":338255,\"journal\":{\"name\":\"2017 International Symposium on Signals, Circuits and Systems (ISSCS)\",\"volume\":\"108 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Symposium on Signals, Circuits and Systems (ISSCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSCS.2017.8034887\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Symposium on Signals, Circuits and Systems (ISSCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCS.2017.8034887","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们提出了一种改进的图像检索方法,专门用于城市环境中的建筑物/地标图像。使用基于支持向量机的分类器将局部检测到的关键点标记为构建或非构建。此后,只保留了标记为建筑物的关键点。这样,数据库词汇表中的数据被简化为只有相关的数据,并且只考虑相关的特征,有效地描述了目标建筑。在Paris6k和Oxford5k数据集上进行的实验结果表明,该方法在检索精度方面有显著提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Local feature selection for urban image retrieval
In this paper, we propose an improved image retrieval method, dedicated to images of buildings/landmarks from urban environments. Locally detected key points are binary labelled as building or no-building using a SVM-based classifier. Thereafter, only key points labelled as building are retained. In this way, the data in the database vocabulary is reduced to only the relevant one and solely the relevant features, effectively describing the targeted buildings are considered. The experimental results, carried out on the Paris6k and Oxford5k data sets show significant improvement in terms of retrieval precision.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信