P. Zoghi, Mark Shtern, Marin Litoiu, Hamoun Ghanbari
{"title":"设计部署在云环境中的自适应应用程序","authors":"P. Zoghi, Mark Shtern, Marin Litoiu, Hamoun Ghanbari","doi":"10.1145/2822896","DOIUrl":null,"url":null,"abstract":"Designing an adaptive system to meet its quality constraints in the face of environmental uncertainties can be a challenging task. In a cloud environment, a designer has to consider and evaluate different control points, that is, those variables that affect the quality of the software system. This article presents a methodology for designing adaptive systems in cloud environments. The proposed methodology consists of several phases that take high-level stakeholders’ adaptation goals and transform them into lower-level MAPE-K loop control points. The MAPE-K loops are then activated at runtime using search-based algorithms. Our methodology includes the elicitation, ranking, and evaluation of control points, all meant to enable a runtime search-based adaptation. We conducted several experiments to evaluate the different phases of our methodology and to validate the runtime adaptation efficiency.","PeriodicalId":377078,"journal":{"name":"ACM Transactions on Autonomous and Adaptive Systems (TAAS)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":"{\"title\":\"Designing Adaptive Applications Deployed on Cloud Environments\",\"authors\":\"P. Zoghi, Mark Shtern, Marin Litoiu, Hamoun Ghanbari\",\"doi\":\"10.1145/2822896\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Designing an adaptive system to meet its quality constraints in the face of environmental uncertainties can be a challenging task. In a cloud environment, a designer has to consider and evaluate different control points, that is, those variables that affect the quality of the software system. This article presents a methodology for designing adaptive systems in cloud environments. The proposed methodology consists of several phases that take high-level stakeholders’ adaptation goals and transform them into lower-level MAPE-K loop control points. The MAPE-K loops are then activated at runtime using search-based algorithms. Our methodology includes the elicitation, ranking, and evaluation of control points, all meant to enable a runtime search-based adaptation. We conducted several experiments to evaluate the different phases of our methodology and to validate the runtime adaptation efficiency.\",\"PeriodicalId\":377078,\"journal\":{\"name\":\"ACM Transactions on Autonomous and Adaptive Systems (TAAS)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Autonomous and Adaptive Systems (TAAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2822896\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Autonomous and Adaptive Systems (TAAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2822896","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Designing Adaptive Applications Deployed on Cloud Environments
Designing an adaptive system to meet its quality constraints in the face of environmental uncertainties can be a challenging task. In a cloud environment, a designer has to consider and evaluate different control points, that is, those variables that affect the quality of the software system. This article presents a methodology for designing adaptive systems in cloud environments. The proposed methodology consists of several phases that take high-level stakeholders’ adaptation goals and transform them into lower-level MAPE-K loop control points. The MAPE-K loops are then activated at runtime using search-based algorithms. Our methodology includes the elicitation, ranking, and evaluation of control points, all meant to enable a runtime search-based adaptation. We conducted several experiments to evaluate the different phases of our methodology and to validate the runtime adaptation efficiency.