Miren Illarramendi Rezabal, L. Elorza, F. Larrinaga, Goiuria Sagardui Mendieta
{"title":"CRESCO框架和检查器:反射UML状态机的c++代码和检查器的自动生成","authors":"Miren Illarramendi Rezabal, L. Elorza, F. Larrinaga, Goiuria Sagardui Mendieta","doi":"10.1109/ISSREW51248.2020.00032","DOIUrl":null,"url":null,"abstract":"Software Systems are becoming increasingly complex leading to new Validation & Verification challenges. Model checking and testing techniques are used at development time while runtime verification aims to verify that a system satisfies a given property at runtime. This second technique complements the first one. This paper presents a tool that enables the developers to generate automatically reflective UML State Machine controllers and the Runtime Safety Properties Checker (RSPC) which checks a component-based software system’s safety properties defined at design phase. We address embedded systems whose software components are designed by Unified Modelling Language-State Machines (UML-SM) and their internal information can be observed in terms of model elements at runtime. RESCO (REflective State Machines-based observable software COmponents) framework, generates software components that provide this runtime observability. The checker uses software components’ internal status information to check system level safety properties. The checker detects when a system safety property is violated and starts a safe adaptation process to prevent the hazardous scenario. Thus, as demonstrated in the evaluated experiment but not shown in the paper due to the space limitation, the safety of the system is enhanced.","PeriodicalId":202247,"journal":{"name":"2020 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"CRESCO Framework and Checker: Automatic generation of Reflective UML State Machine’s C++ Code and Checker\",\"authors\":\"Miren Illarramendi Rezabal, L. Elorza, F. Larrinaga, Goiuria Sagardui Mendieta\",\"doi\":\"10.1109/ISSREW51248.2020.00032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Software Systems are becoming increasingly complex leading to new Validation & Verification challenges. Model checking and testing techniques are used at development time while runtime verification aims to verify that a system satisfies a given property at runtime. This second technique complements the first one. This paper presents a tool that enables the developers to generate automatically reflective UML State Machine controllers and the Runtime Safety Properties Checker (RSPC) which checks a component-based software system’s safety properties defined at design phase. We address embedded systems whose software components are designed by Unified Modelling Language-State Machines (UML-SM) and their internal information can be observed in terms of model elements at runtime. RESCO (REflective State Machines-based observable software COmponents) framework, generates software components that provide this runtime observability. The checker uses software components’ internal status information to check system level safety properties. The checker detects when a system safety property is violated and starts a safe adaptation process to prevent the hazardous scenario. Thus, as demonstrated in the evaluated experiment but not shown in the paper due to the space limitation, the safety of the system is enhanced.\",\"PeriodicalId\":202247,\"journal\":{\"name\":\"2020 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSREW51248.2020.00032\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSREW51248.2020.00032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
CRESCO Framework and Checker: Automatic generation of Reflective UML State Machine’s C++ Code and Checker
Software Systems are becoming increasingly complex leading to new Validation & Verification challenges. Model checking and testing techniques are used at development time while runtime verification aims to verify that a system satisfies a given property at runtime. This second technique complements the first one. This paper presents a tool that enables the developers to generate automatically reflective UML State Machine controllers and the Runtime Safety Properties Checker (RSPC) which checks a component-based software system’s safety properties defined at design phase. We address embedded systems whose software components are designed by Unified Modelling Language-State Machines (UML-SM) and their internal information can be observed in terms of model elements at runtime. RESCO (REflective State Machines-based observable software COmponents) framework, generates software components that provide this runtime observability. The checker uses software components’ internal status information to check system level safety properties. The checker detects when a system safety property is violated and starts a safe adaptation process to prevent the hazardous scenario. Thus, as demonstrated in the evaluated experiment but not shown in the paper due to the space limitation, the safety of the system is enhanced.