利用物理不可克隆功能的高级计量基础设施的身份验证和密钥管理

Mohamed Nabeel, Sam Kerr, Xiaoyu Ding, E. Bertino
{"title":"利用物理不可克隆功能的高级计量基础设施的身份验证和密钥管理","authors":"Mohamed Nabeel, Sam Kerr, Xiaoyu Ding, E. Bertino","doi":"10.1109/SmartGridComm.2012.6486004","DOIUrl":null,"url":null,"abstract":"Conventional utility meters are increasingly being replaced with smart meters as smart meter based AMIs (Advanced Metering Infrastructures) provide many benefits over conventional power infrastrucutures. However, security issues pertaining to the data transmission between smart meters and utility servers have been a major concern. With large scale AMI deployments, addressing these issues is challenging. In particular, as data travels through several networks, secure end-to-end communication based on strong authentication mechanisms and a robust and scalable key management schemes are crucial for assuring the confidentiality and the integrity of this data. In this paper, we propose an approach based on PUF (physically unclonable function) technology for providing strong hardware based authentication of smart meters and efficient key management to assure the confidentiality and integrity of messages exchanged between smart meters and the utility. Our approach does not require modifications to the existing smart meter communication. We have developed a proof-of-concept implementation of the proposed approach which is also briefly discussed in the paper.","PeriodicalId":143915,"journal":{"name":"2012 IEEE Third International Conference on Smart Grid Communications (SmartGridComm)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2012-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"63","resultStr":"{\"title\":\"Authentication and key management for Advanced Metering Infrastructures utilizing physically unclonable functions\",\"authors\":\"Mohamed Nabeel, Sam Kerr, Xiaoyu Ding, E. Bertino\",\"doi\":\"10.1109/SmartGridComm.2012.6486004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Conventional utility meters are increasingly being replaced with smart meters as smart meter based AMIs (Advanced Metering Infrastructures) provide many benefits over conventional power infrastrucutures. However, security issues pertaining to the data transmission between smart meters and utility servers have been a major concern. With large scale AMI deployments, addressing these issues is challenging. In particular, as data travels through several networks, secure end-to-end communication based on strong authentication mechanisms and a robust and scalable key management schemes are crucial for assuring the confidentiality and the integrity of this data. In this paper, we propose an approach based on PUF (physically unclonable function) technology for providing strong hardware based authentication of smart meters and efficient key management to assure the confidentiality and integrity of messages exchanged between smart meters and the utility. Our approach does not require modifications to the existing smart meter communication. We have developed a proof-of-concept implementation of the proposed approach which is also briefly discussed in the paper.\",\"PeriodicalId\":143915,\"journal\":{\"name\":\"2012 IEEE Third International Conference on Smart Grid Communications (SmartGridComm)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"63\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE Third International Conference on Smart Grid Communications (SmartGridComm)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SmartGridComm.2012.6486004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Third International Conference on Smart Grid Communications (SmartGridComm)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SmartGridComm.2012.6486004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 63

摘要

传统的电表越来越多地被智能电表所取代,因为基于智能电表的ami(高级计量基础设施)比传统的电力基础设施提供了许多好处。然而,与智能电表和公用事业服务器之间的数据传输有关的安全问题一直是一个主要问题。在大规模AMI部署中,解决这些问题具有挑战性。特别是,当数据通过多个网络传输时,基于强大的身份验证机制和健壮且可扩展的密钥管理方案的安全端到端通信对于确保数据的机密性和完整性至关重要。本文提出了一种基于PUF(物理不可克隆功能)技术的方法,为智能电表提供强大的硬件认证和高效的密钥管理,以确保智能电表与公用事业公司之间交换消息的保密性和完整性。我们的方法不需要修改现有的智能电表通信。我们已经开发了一个拟议方法的概念验证实现,并在本文中进行了简要讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Authentication and key management for Advanced Metering Infrastructures utilizing physically unclonable functions
Conventional utility meters are increasingly being replaced with smart meters as smart meter based AMIs (Advanced Metering Infrastructures) provide many benefits over conventional power infrastrucutures. However, security issues pertaining to the data transmission between smart meters and utility servers have been a major concern. With large scale AMI deployments, addressing these issues is challenging. In particular, as data travels through several networks, secure end-to-end communication based on strong authentication mechanisms and a robust and scalable key management schemes are crucial for assuring the confidentiality and the integrity of this data. In this paper, we propose an approach based on PUF (physically unclonable function) technology for providing strong hardware based authentication of smart meters and efficient key management to assure the confidentiality and integrity of messages exchanged between smart meters and the utility. Our approach does not require modifications to the existing smart meter communication. We have developed a proof-of-concept implementation of the proposed approach which is also briefly discussed in the paper.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信