面向大规模并行动态状态估计的同步发电机详细建模

H. Karimipour, V. Dinavahi
{"title":"面向大规模并行动态状态估计的同步发电机详细建模","authors":"H. Karimipour, V. Dinavahi","doi":"10.1109/NAPS.2014.6965417","DOIUrl":null,"url":null,"abstract":"Synchronous generators are normally represented in a simplified fashion to reduce computational complexity in dynamic state estimation (DSE). In this paper a dynamic state estimator for a sixth-order synchronous generator model was developed on the massively parallel graphic processing units (GPU) to provide detailed and accurate Extended Kalman Filter (EKF) based estimation of the generator states. The estimation results are compared with the time domain simulation results on the CPU to demonstrate the accuracy of the proposed method. Also a speed-up of 10.02 for a 5120 generator system is reported.","PeriodicalId":421766,"journal":{"name":"2014 North American Power Symposium (NAPS)","volume":"99 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"On detailed synchronous generator modeling for massively parallel dynamic state estimation\",\"authors\":\"H. Karimipour, V. Dinavahi\",\"doi\":\"10.1109/NAPS.2014.6965417\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Synchronous generators are normally represented in a simplified fashion to reduce computational complexity in dynamic state estimation (DSE). In this paper a dynamic state estimator for a sixth-order synchronous generator model was developed on the massively parallel graphic processing units (GPU) to provide detailed and accurate Extended Kalman Filter (EKF) based estimation of the generator states. The estimation results are compared with the time domain simulation results on the CPU to demonstrate the accuracy of the proposed method. Also a speed-up of 10.02 for a 5120 generator system is reported.\",\"PeriodicalId\":421766,\"journal\":{\"name\":\"2014 North American Power Symposium (NAPS)\",\"volume\":\"99 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 North American Power Symposium (NAPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NAPS.2014.6965417\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 North American Power Symposium (NAPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAPS.2014.6965417","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

为了降低动态状态估计(DSE)中的计算复杂度,同步发电机通常以简化的方式表示。本文在大规模并行图形处理单元(GPU)上开发了一种六阶同步发电机模型的动态状态估计器,以提供详细而准确的基于扩展卡尔曼滤波(EKF)的发电机状态估计。将估计结果与CPU上的时域仿真结果进行了比较,验证了所提方法的准确性。据报道,5120发电机系统的加速也提高了10.02。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On detailed synchronous generator modeling for massively parallel dynamic state estimation
Synchronous generators are normally represented in a simplified fashion to reduce computational complexity in dynamic state estimation (DSE). In this paper a dynamic state estimator for a sixth-order synchronous generator model was developed on the massively parallel graphic processing units (GPU) to provide detailed and accurate Extended Kalman Filter (EKF) based estimation of the generator states. The estimation results are compared with the time domain simulation results on the CPU to demonstrate the accuracy of the proposed method. Also a speed-up of 10.02 for a 5120 generator system is reported.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信