基于原子范数最小化的压缩多信道频率估计的平均案例分析

Zai Yang, Yonina C. Eldar, Lihua Xie
{"title":"基于原子范数最小化的压缩多信道频率估计的平均案例分析","authors":"Zai Yang, Yonina C. Eldar, Lihua Xie","doi":"10.1109/ICDSP.2018.8631803","DOIUrl":null,"url":null,"abstract":"Compressive multichannel frequency estimation refers to the process of retrieving the frequency profile shared by multiple signals from their compressive samples. A recent approach to this problem relies on atomic norm minimization which exploitsjoint sparsity among the channels, is solved using convex optimization, and has strong theoretical guarantees. We provide in this paper an average-case analysis for atomic norm minimization by assuming proper randomness on the amplitudes of the frequencies. We show that the sample size per channel required for exact frequency estimation from noiseless samples decreases as the number of channels increases and is on the order of $K\\displaystyle \\log K\\left(1+\\frac{1}{L}\\log N\\right)$, where K is the number of frequencies, L is the number of channels, and N is a fixed parameter proportional to the sampling window size and inversely proportional to the desired resolution.","PeriodicalId":218806,"journal":{"name":"2018 IEEE 23rd International Conference on Digital Signal Processing (DSP)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Average Case Analysis of Compressive Multichannel Frequency Estimation Using Atomic Norm Minimization\",\"authors\":\"Zai Yang, Yonina C. Eldar, Lihua Xie\",\"doi\":\"10.1109/ICDSP.2018.8631803\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Compressive multichannel frequency estimation refers to the process of retrieving the frequency profile shared by multiple signals from their compressive samples. A recent approach to this problem relies on atomic norm minimization which exploitsjoint sparsity among the channels, is solved using convex optimization, and has strong theoretical guarantees. We provide in this paper an average-case analysis for atomic norm minimization by assuming proper randomness on the amplitudes of the frequencies. We show that the sample size per channel required for exact frequency estimation from noiseless samples decreases as the number of channels increases and is on the order of $K\\\\displaystyle \\\\log K\\\\left(1+\\\\frac{1}{L}\\\\log N\\\\right)$, where K is the number of frequencies, L is the number of channels, and N is a fixed parameter proportional to the sampling window size and inversely proportional to the desired resolution.\",\"PeriodicalId\":218806,\"journal\":{\"name\":\"2018 IEEE 23rd International Conference on Digital Signal Processing (DSP)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 23rd International Conference on Digital Signal Processing (DSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDSP.2018.8631803\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 23rd International Conference on Digital Signal Processing (DSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDSP.2018.8631803","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

压缩多通道频率估计是指从多个信号的压缩样本中提取多个信号共享的频率分布的过程。最近的一种解决该问题的方法依赖于原子范数最小化,该方法利用通道之间的联合稀疏性,使用凸优化来解决,并且具有很强的理论保证。本文通过假设频率幅值的适当随机性,给出了原子范数最小化的平均情况分析。我们表明,从无噪声样本进行精确频率估计所需的每个通道的样本量随着通道数量的增加而减少,其数量级为$K\displaystyle \log K\left(1+\frac{1}{L}\log N\right)$,其中K是频率数量,L是通道数量,N是与采样窗口大小成正比的固定参数,与所需分辨率成反比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Average Case Analysis of Compressive Multichannel Frequency Estimation Using Atomic Norm Minimization
Compressive multichannel frequency estimation refers to the process of retrieving the frequency profile shared by multiple signals from their compressive samples. A recent approach to this problem relies on atomic norm minimization which exploitsjoint sparsity among the channels, is solved using convex optimization, and has strong theoretical guarantees. We provide in this paper an average-case analysis for atomic norm minimization by assuming proper randomness on the amplitudes of the frequencies. We show that the sample size per channel required for exact frequency estimation from noiseless samples decreases as the number of channels increases and is on the order of $K\displaystyle \log K\left(1+\frac{1}{L}\log N\right)$, where K is the number of frequencies, L is the number of channels, and N is a fixed parameter proportional to the sampling window size and inversely proportional to the desired resolution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信