时滞抛物型系统的极值问题

A. Kowalewski, M. Miśkowicz
{"title":"时滞抛物型系统的极值问题","authors":"A. Kowalewski, M. Miśkowicz","doi":"10.1109/PC.2017.7976255","DOIUrl":null,"url":null,"abstract":"Extremal problems for time lag parabolic systems are presented. An optimal boundary control problem for distributed parabolic systems in which constant time lags appear in the state equations and in the boundary conditions simultaneously is solved. Such equations constitute in a linear approximation a universal mathematical model for many processes of optimal heating. The time horizon is fixed. Making use of the Dubovicki-Milutin scheme, necessary and sufficient conditions of optimality for the Neumann problem with the quadratic performance functionals and constrained control are derived.","PeriodicalId":377619,"journal":{"name":"2017 21st International Conference on Process Control (PC)","volume":"316 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Extremal problems for time lag parabolic systems\",\"authors\":\"A. Kowalewski, M. Miśkowicz\",\"doi\":\"10.1109/PC.2017.7976255\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Extremal problems for time lag parabolic systems are presented. An optimal boundary control problem for distributed parabolic systems in which constant time lags appear in the state equations and in the boundary conditions simultaneously is solved. Such equations constitute in a linear approximation a universal mathematical model for many processes of optimal heating. The time horizon is fixed. Making use of the Dubovicki-Milutin scheme, necessary and sufficient conditions of optimality for the Neumann problem with the quadratic performance functionals and constrained control are derived.\",\"PeriodicalId\":377619,\"journal\":{\"name\":\"2017 21st International Conference on Process Control (PC)\",\"volume\":\"316 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 21st International Conference on Process Control (PC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PC.2017.7976255\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 21st International Conference on Process Control (PC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PC.2017.7976255","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

给出了一类时滞抛物型系统的极值问题。求解了状态方程和边界条件同时存在恒定时滞的分布式抛物型系统的最优边界控制问题。这些方程以线性近似的形式构成了许多最优加热过程的通用数学模型。时间范围是固定的。利用Dubovicki-Milutin格式,导出了具有二次性能泛函和约束控制的Neumann问题的最优性的充分必要条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Extremal problems for time lag parabolic systems
Extremal problems for time lag parabolic systems are presented. An optimal boundary control problem for distributed parabolic systems in which constant time lags appear in the state equations and in the boundary conditions simultaneously is solved. Such equations constitute in a linear approximation a universal mathematical model for many processes of optimal heating. The time horizon is fixed. Making use of the Dubovicki-Milutin scheme, necessary and sufficient conditions of optimality for the Neumann problem with the quadratic performance functionals and constrained control are derived.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信