用结构化简化法估计滑坡引起的管道失效概率

R. Guthrie, E. Reid
{"title":"用结构化简化法估计滑坡引起的管道失效概率","authors":"R. Guthrie, E. Reid","doi":"10.1115/IPC2018-78157","DOIUrl":null,"url":null,"abstract":"Much of North America, and indeed much of the global landscape, is comprised of either locally or regionally steep slopes, river valleys, and weak or unstable geology. Landslides and ground movements continue to impact pipelines that traverse these regions. Pipeline integrity management programs (IMP’s) are increasingly expecting quantitative estimates of ground movement or pipe failure as part of pipeline risk management systems. Quantitative analysis usually relies on one or more of statistics, physical models, and expert judgment. Statistics incorporate ground and pipe behavior (for hazard and vulnerability respectively) over a broad area to infer local probabilities. They carry the weight of big data, but the local application is almost certainly incorrect (variability even for regions exceeds 2 orders of magnitude). Detailed geotechnical (hazard) and soil-pipe interaction and stress (vulnerability) models provide rigorous results, but require substantial effort and/or expert judgment to parameterize the inputs and boundary conditions. We present herein a structured tool to calculate probability of failure (PoF) using expert judgment supported by known, instrumented or observable conditions and statistics (where available). We provide a series of tables used as a basis for nodal calculations along a branch path of a decision tree, and discuss the challenges and results from actual application to over 100 sites in the Interior Plains. The method is intended to be a practical informative approach based on, and limited by, data inputs. It is a flexible fit for purpose assessment that takes advantage of the best available data, however, the method relies on the user to articulate a level of confidence in, or the basis of the results.","PeriodicalId":164582,"journal":{"name":"Volume 2: Pipeline Safety Management Systems; Project Management, Design, Construction, and Environmental Issues; Strain Based Design; Risk and Reliability; Northern Offshore and Production Pipelines","volume":"154 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Estimating Landslide Induced Probability of Failure to Pipelines Using a Structured Reductionist Approach\",\"authors\":\"R. Guthrie, E. Reid\",\"doi\":\"10.1115/IPC2018-78157\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Much of North America, and indeed much of the global landscape, is comprised of either locally or regionally steep slopes, river valleys, and weak or unstable geology. Landslides and ground movements continue to impact pipelines that traverse these regions. Pipeline integrity management programs (IMP’s) are increasingly expecting quantitative estimates of ground movement or pipe failure as part of pipeline risk management systems. Quantitative analysis usually relies on one or more of statistics, physical models, and expert judgment. Statistics incorporate ground and pipe behavior (for hazard and vulnerability respectively) over a broad area to infer local probabilities. They carry the weight of big data, but the local application is almost certainly incorrect (variability even for regions exceeds 2 orders of magnitude). Detailed geotechnical (hazard) and soil-pipe interaction and stress (vulnerability) models provide rigorous results, but require substantial effort and/or expert judgment to parameterize the inputs and boundary conditions. We present herein a structured tool to calculate probability of failure (PoF) using expert judgment supported by known, instrumented or observable conditions and statistics (where available). We provide a series of tables used as a basis for nodal calculations along a branch path of a decision tree, and discuss the challenges and results from actual application to over 100 sites in the Interior Plains. The method is intended to be a practical informative approach based on, and limited by, data inputs. It is a flexible fit for purpose assessment that takes advantage of the best available data, however, the method relies on the user to articulate a level of confidence in, or the basis of the results.\",\"PeriodicalId\":164582,\"journal\":{\"name\":\"Volume 2: Pipeline Safety Management Systems; Project Management, Design, Construction, and Environmental Issues; Strain Based Design; Risk and Reliability; Northern Offshore and Production Pipelines\",\"volume\":\"154 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 2: Pipeline Safety Management Systems; Project Management, Design, Construction, and Environmental Issues; Strain Based Design; Risk and Reliability; Northern Offshore and Production Pipelines\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/IPC2018-78157\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 2: Pipeline Safety Management Systems; Project Management, Design, Construction, and Environmental Issues; Strain Based Design; Risk and Reliability; Northern Offshore and Production Pipelines","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/IPC2018-78157","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

北美的大部分地区,实际上是全球的大部分地区,都是由局部或区域性的陡坡、河谷和脆弱或不稳定的地质组成的。山体滑坡和地面运动继续影响着穿越这些地区的管道。作为管道风险管理系统的一部分,管道完整性管理项目(IMP)越来越期望对地面移动或管道失效进行定量评估。定量分析通常依赖于统计数据、物理模型和专家判断中的一个或多个。统计数据包括地面和管道的行为(分别为危险和脆弱性)在一个广泛的区域,以推断当地的概率。它们承载着大数据的重量,但本地应用几乎肯定是不正确的(即使是区域的变化也超过了2个数量级)。详细的岩土(危险)、土-管相互作用和应力(脆弱性)模型提供了严格的结果,但需要大量的努力和/或专家判断来参数化输入和边界条件。我们在这里提出了一个结构化的工具来计算故障概率(PoF),使用由已知的、仪器的或可观察的条件和统计数据(如有)支持的专家判断。我们提供了一系列表格,作为决策树分支路径节点计算的基础,并讨论了在内陆平原100多个站点的实际应用所面临的挑战和结果。该方法旨在成为一种基于数据输入并受其限制的实用信息方法。它是一种灵活的适合目的的评估,利用了最好的可用数据,然而,该方法依赖于用户阐明对结果的信心程度或基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimating Landslide Induced Probability of Failure to Pipelines Using a Structured Reductionist Approach
Much of North America, and indeed much of the global landscape, is comprised of either locally or regionally steep slopes, river valleys, and weak or unstable geology. Landslides and ground movements continue to impact pipelines that traverse these regions. Pipeline integrity management programs (IMP’s) are increasingly expecting quantitative estimates of ground movement or pipe failure as part of pipeline risk management systems. Quantitative analysis usually relies on one or more of statistics, physical models, and expert judgment. Statistics incorporate ground and pipe behavior (for hazard and vulnerability respectively) over a broad area to infer local probabilities. They carry the weight of big data, but the local application is almost certainly incorrect (variability even for regions exceeds 2 orders of magnitude). Detailed geotechnical (hazard) and soil-pipe interaction and stress (vulnerability) models provide rigorous results, but require substantial effort and/or expert judgment to parameterize the inputs and boundary conditions. We present herein a structured tool to calculate probability of failure (PoF) using expert judgment supported by known, instrumented or observable conditions and statistics (where available). We provide a series of tables used as a basis for nodal calculations along a branch path of a decision tree, and discuss the challenges and results from actual application to over 100 sites in the Interior Plains. The method is intended to be a practical informative approach based on, and limited by, data inputs. It is a flexible fit for purpose assessment that takes advantage of the best available data, however, the method relies on the user to articulate a level of confidence in, or the basis of the results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信