基于微处理器的系统中具有快速物理寻址的接口

M. Maamoun, A. Benbelkacem, D. Berkani, A. Guessoum
{"title":"基于微处理器的系统中具有快速物理寻址的接口","authors":"M. Maamoun, A. Benbelkacem, D. Berkani, A. Guessoum","doi":"10.1109/IWSOC.2003.1213024","DOIUrl":null,"url":null,"abstract":"This work develops a new technique for interfacing the data exchange between the microprocessor-based systems and the external devices. This technique exploits the great capacity of interfacing of Extended Physical Addressing and uses the technique of Direct Memory Access (DMA), increases the frequency of the new bus and improves the speed of data exchange. This Fast Physical Addressing, based on the use of software/hardware system in the microprocessor-based system, has two aims. First, the management of a large external memory capacity, with a reduced use of physical addresses of the microprocessor-based system. Second, the increase of the data exchange speed compared to the Extended Physical Addressing. While using this architecture in microprocessor-based system or in computer, the input of the hardware part of our system will be connected to the bus system, and the output, which is a new bus, will be connected to an external device. The new bus is composed of a data bus, a control bus and an address bus.","PeriodicalId":259178,"journal":{"name":"The 3rd IEEE International Workshop on System-on-Chip for Real-Time Applications, 2003. Proceedings.","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Interfacing in microprocessor-based systems with a fast physical addressing\",\"authors\":\"M. Maamoun, A. Benbelkacem, D. Berkani, A. Guessoum\",\"doi\":\"10.1109/IWSOC.2003.1213024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work develops a new technique for interfacing the data exchange between the microprocessor-based systems and the external devices. This technique exploits the great capacity of interfacing of Extended Physical Addressing and uses the technique of Direct Memory Access (DMA), increases the frequency of the new bus and improves the speed of data exchange. This Fast Physical Addressing, based on the use of software/hardware system in the microprocessor-based system, has two aims. First, the management of a large external memory capacity, with a reduced use of physical addresses of the microprocessor-based system. Second, the increase of the data exchange speed compared to the Extended Physical Addressing. While using this architecture in microprocessor-based system or in computer, the input of the hardware part of our system will be connected to the bus system, and the output, which is a new bus, will be connected to an external device. The new bus is composed of a data bus, a control bus and an address bus.\",\"PeriodicalId\":259178,\"journal\":{\"name\":\"The 3rd IEEE International Workshop on System-on-Chip for Real-Time Applications, 2003. Proceedings.\",\"volume\":\"68 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 3rd IEEE International Workshop on System-on-Chip for Real-Time Applications, 2003. Proceedings.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWSOC.2003.1213024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 3rd IEEE International Workshop on System-on-Chip for Real-Time Applications, 2003. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWSOC.2003.1213024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本工作开发了一种基于微处理器的系统与外部设备之间数据交换接口的新技术。该技术利用扩展物理寻址的巨大接口容量,采用直接存储器存取(DMA)技术,提高了新总线的频率,提高了数据交换的速度。这种基于软/硬件系统在基于微处理器的系统中使用的快速物理寻址有两个目的。首先,管理大的外部存储器容量,以减少使用基于微处理器的物理地址为基础的系统。第二,与扩展物理寻址相比,数据交换速度的提高。在基于微处理器的系统或计算机中使用这种体系结构时,我们的系统的硬件部分的输入将连接到总线系统,输出是一个新的总线,将连接到外部设备。这种新型总线由数据总线、控制总线和地址总线组成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Interfacing in microprocessor-based systems with a fast physical addressing
This work develops a new technique for interfacing the data exchange between the microprocessor-based systems and the external devices. This technique exploits the great capacity of interfacing of Extended Physical Addressing and uses the technique of Direct Memory Access (DMA), increases the frequency of the new bus and improves the speed of data exchange. This Fast Physical Addressing, based on the use of software/hardware system in the microprocessor-based system, has two aims. First, the management of a large external memory capacity, with a reduced use of physical addresses of the microprocessor-based system. Second, the increase of the data exchange speed compared to the Extended Physical Addressing. While using this architecture in microprocessor-based system or in computer, the input of the hardware part of our system will be connected to the bus system, and the output, which is a new bus, will be connected to an external device. The new bus is composed of a data bus, a control bus and an address bus.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信