Frederick Reiss, Kurt Stockinger, Kesheng Wu, A. Shoshani, J. Hellerstein
{"title":"支持实时查询实时流数据和历史流数据","authors":"Frederick Reiss, Kurt Stockinger, Kesheng Wu, A. Shoshani, J. Hellerstein","doi":"10.1109/SSDBM.2007.34","DOIUrl":null,"url":null,"abstract":"Applications that query data streams in order to identify trends, patterns, or anomalies can often benefit from comparing the live stream data with archived historical stream data. However, searching this historical data in real time has been considered so far to be prohibitively expensive. One of the main bottlenecks is the update costs of the indices over the archived data. In this paper, we address this problem by using our highly-efficient bitmap indexing technology (called FastBit) and demonstrate that the index update operations are sufficiently efficient for this bottleneck to be removed. We describe our prototype system based on the TelegraphCQ streaming query processor and the FastBit bitmap index. We present a detailed performance evaluation of our system using a complex query workload for analyzing real network traffic data. The combined system uses TelegraphCQ to analyze streams of traffic information and FastBit to correlate current behaviors with historical trends. We demonstrate that our system can simultaneously analyze (1) live streams with high data rates and (2) a large repository of historical stream data.","PeriodicalId":122925,"journal":{"name":"19th International Conference on Scientific and Statistical Database Management (SSDBM 2007)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"76","resultStr":"{\"title\":\"Enabling Real-Time Querying of Live and Historical Stream Data\",\"authors\":\"Frederick Reiss, Kurt Stockinger, Kesheng Wu, A. Shoshani, J. Hellerstein\",\"doi\":\"10.1109/SSDBM.2007.34\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Applications that query data streams in order to identify trends, patterns, or anomalies can often benefit from comparing the live stream data with archived historical stream data. However, searching this historical data in real time has been considered so far to be prohibitively expensive. One of the main bottlenecks is the update costs of the indices over the archived data. In this paper, we address this problem by using our highly-efficient bitmap indexing technology (called FastBit) and demonstrate that the index update operations are sufficiently efficient for this bottleneck to be removed. We describe our prototype system based on the TelegraphCQ streaming query processor and the FastBit bitmap index. We present a detailed performance evaluation of our system using a complex query workload for analyzing real network traffic data. The combined system uses TelegraphCQ to analyze streams of traffic information and FastBit to correlate current behaviors with historical trends. We demonstrate that our system can simultaneously analyze (1) live streams with high data rates and (2) a large repository of historical stream data.\",\"PeriodicalId\":122925,\"journal\":{\"name\":\"19th International Conference on Scientific and Statistical Database Management (SSDBM 2007)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"76\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"19th International Conference on Scientific and Statistical Database Management (SSDBM 2007)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSDBM.2007.34\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"19th International Conference on Scientific and Statistical Database Management (SSDBM 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSDBM.2007.34","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Enabling Real-Time Querying of Live and Historical Stream Data
Applications that query data streams in order to identify trends, patterns, or anomalies can often benefit from comparing the live stream data with archived historical stream data. However, searching this historical data in real time has been considered so far to be prohibitively expensive. One of the main bottlenecks is the update costs of the indices over the archived data. In this paper, we address this problem by using our highly-efficient bitmap indexing technology (called FastBit) and demonstrate that the index update operations are sufficiently efficient for this bottleneck to be removed. We describe our prototype system based on the TelegraphCQ streaming query processor and the FastBit bitmap index. We present a detailed performance evaluation of our system using a complex query workload for analyzing real network traffic data. The combined system uses TelegraphCQ to analyze streams of traffic information and FastBit to correlate current behaviors with historical trends. We demonstrate that our system can simultaneously analyze (1) live streams with high data rates and (2) a large repository of historical stream data.