{"title":"次对数轮分布(∆+1)着色","authors":"David G. Harris, Johannes Schneider, Hsin-Hao Su","doi":"10.1145/2897518.2897533","DOIUrl":null,"url":null,"abstract":"The (∆+1)-coloring problem is a fundamental symmetry breaking problem in distributed computing. We give a new randomized coloring algorithm for (∆+1)-coloring running in O(√log ∆)+ 2^O(√log log n) rounds with probability 1-1/n^Ω(1) in a graph with n nodes and maximum degree ∆. This implies that the (∆+1)-coloring problem is easier than the maximal independent set problem and the maximal matching problem, due to their lower bounds by Kuhn, Moscibroda, and Wattenhofer [PODC'04]. Our algorithm also extends to the list-coloring problem where the palette of each node contains ∆+1 colors.","PeriodicalId":442965,"journal":{"name":"Proceedings of the forty-eighth annual ACM symposium on Theory of Computing","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"91","resultStr":"{\"title\":\"Distributed (∆+1)-coloring in sublogarithmic rounds\",\"authors\":\"David G. Harris, Johannes Schneider, Hsin-Hao Su\",\"doi\":\"10.1145/2897518.2897533\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The (∆+1)-coloring problem is a fundamental symmetry breaking problem in distributed computing. We give a new randomized coloring algorithm for (∆+1)-coloring running in O(√log ∆)+ 2^O(√log log n) rounds with probability 1-1/n^Ω(1) in a graph with n nodes and maximum degree ∆. This implies that the (∆+1)-coloring problem is easier than the maximal independent set problem and the maximal matching problem, due to their lower bounds by Kuhn, Moscibroda, and Wattenhofer [PODC'04]. Our algorithm also extends to the list-coloring problem where the palette of each node contains ∆+1 colors.\",\"PeriodicalId\":442965,\"journal\":{\"name\":\"Proceedings of the forty-eighth annual ACM symposium on Theory of Computing\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"91\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the forty-eighth annual ACM symposium on Theory of Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2897518.2897533\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the forty-eighth annual ACM symposium on Theory of Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2897518.2897533","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Distributed (∆+1)-coloring in sublogarithmic rounds
The (∆+1)-coloring problem is a fundamental symmetry breaking problem in distributed computing. We give a new randomized coloring algorithm for (∆+1)-coloring running in O(√log ∆)+ 2^O(√log log n) rounds with probability 1-1/n^Ω(1) in a graph with n nodes and maximum degree ∆. This implies that the (∆+1)-coloring problem is easier than the maximal independent set problem and the maximal matching problem, due to their lower bounds by Kuhn, Moscibroda, and Wattenhofer [PODC'04]. Our algorithm also extends to the list-coloring problem where the palette of each node contains ∆+1 colors.