基于长短期记忆递归神经网络的化学物质分类

Jinlei Zhang, Junxiu Liu, Yuling Luo, Qiang Fu, Jinjie Bi, Senhui Qiu, Yi Cao, Xuemei Ding
{"title":"基于长短期记忆递归神经网络的化学物质分类","authors":"Jinlei Zhang, Junxiu Liu, Yuling Luo, Qiang Fu, Jinjie Bi, Senhui Qiu, Yi Cao, Xuemei Ding","doi":"10.1109/ICCT.2017.8359978","DOIUrl":null,"url":null,"abstract":"This paper proposed a chemical substance detection method using the Long Short-Term Memory of Recurrent Neural Networks (LSTM-RNN). The chemical substance data was collected using a mass spectrometer which is a time-series data. The classification accuracy using the LSTM-RNN classifier is 96.84%, which is higher than 75.07% of the ordinary feed forward neural networks. The experimental results show that the LSTM-RNN can learn the properties of the chemical substance dataset and achieve a high detection accuracy.","PeriodicalId":199874,"journal":{"name":"2017 IEEE 17th International Conference on Communication Technology (ICCT)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Chemical substance classification using long short-term memory recurrent neural network\",\"authors\":\"Jinlei Zhang, Junxiu Liu, Yuling Luo, Qiang Fu, Jinjie Bi, Senhui Qiu, Yi Cao, Xuemei Ding\",\"doi\":\"10.1109/ICCT.2017.8359978\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposed a chemical substance detection method using the Long Short-Term Memory of Recurrent Neural Networks (LSTM-RNN). The chemical substance data was collected using a mass spectrometer which is a time-series data. The classification accuracy using the LSTM-RNN classifier is 96.84%, which is higher than 75.07% of the ordinary feed forward neural networks. The experimental results show that the LSTM-RNN can learn the properties of the chemical substance dataset and achieve a high detection accuracy.\",\"PeriodicalId\":199874,\"journal\":{\"name\":\"2017 IEEE 17th International Conference on Communication Technology (ICCT)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 17th International Conference on Communication Technology (ICCT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCT.2017.8359978\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 17th International Conference on Communication Technology (ICCT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCT.2017.8359978","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

提出了一种基于循环神经网络长短期记忆的化学物质检测方法。化学物质的数据是用质谱仪收集的,这是一个时间序列数据。LSTM-RNN分类器的分类准确率为96.84%,高于普通前馈神经网络的75.07%。实验结果表明,LSTM-RNN能够学习化学物质数据集的特性,达到较高的检测精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Chemical substance classification using long short-term memory recurrent neural network
This paper proposed a chemical substance detection method using the Long Short-Term Memory of Recurrent Neural Networks (LSTM-RNN). The chemical substance data was collected using a mass spectrometer which is a time-series data. The classification accuracy using the LSTM-RNN classifier is 96.84%, which is higher than 75.07% of the ordinary feed forward neural networks. The experimental results show that the LSTM-RNN can learn the properties of the chemical substance dataset and achieve a high detection accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信