电动吸引

M. Stevens
{"title":"电动吸引","authors":"M. Stevens","doi":"10.1093/oso/9780198813675.003.0004","DOIUrl":null,"url":null,"abstract":"This chapter assesses the ability of animals to detect and interpret electric information. While sharks often use chemical information to track down prey from a long distance, many species enlist their electric sense to detect electric cues and determine the prey’s precise location and direct their attacks. Although it is normally used for prey detection, the electric sense can sometimes be used in defence too. The chapter then explores the diversity of ways electricity is produced and used by weakly electric fish. Meanwhile, the platypus can use their electric sense both to avoid objects in the water and to locate small prey items. The echidna also has receptors on the tip of its snout that respond to electric information, but its electric sense seems quite limited. Finally, the chapter considers how bees are able to detect electric fields associated with flowers.","PeriodicalId":180249,"journal":{"name":"Secret Worlds","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electric Attraction\",\"authors\":\"M. Stevens\",\"doi\":\"10.1093/oso/9780198813675.003.0004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This chapter assesses the ability of animals to detect and interpret electric information. While sharks often use chemical information to track down prey from a long distance, many species enlist their electric sense to detect electric cues and determine the prey’s precise location and direct their attacks. Although it is normally used for prey detection, the electric sense can sometimes be used in defence too. The chapter then explores the diversity of ways electricity is produced and used by weakly electric fish. Meanwhile, the platypus can use their electric sense both to avoid objects in the water and to locate small prey items. The echidna also has receptors on the tip of its snout that respond to electric information, but its electric sense seems quite limited. Finally, the chapter considers how bees are able to detect electric fields associated with flowers.\",\"PeriodicalId\":180249,\"journal\":{\"name\":\"Secret Worlds\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Secret Worlds\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/oso/9780198813675.003.0004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Secret Worlds","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/oso/9780198813675.003.0004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本章评估了动物探测和解释电信息的能力。虽然鲨鱼经常利用化学信息从远处追踪猎物,但许多物种利用它们的电感来探测电信号,确定猎物的精确位置,并指导它们的攻击。虽然它通常是用来探测猎物的,但电感有时也可以用于防御。然后,本章探讨了弱电鱼产生和使用电的多种方式。与此同时,鸭嘴兽可以利用它们的电感来避开水中的物体,并找到小型猎物。针鼹的鼻尖上也有感受器,可以对电信息做出反应,但它的电感觉似乎相当有限。最后,本章讨论了蜜蜂如何能够探测到与花有关的电场。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Electric Attraction
This chapter assesses the ability of animals to detect and interpret electric information. While sharks often use chemical information to track down prey from a long distance, many species enlist their electric sense to detect electric cues and determine the prey’s precise location and direct their attacks. Although it is normally used for prey detection, the electric sense can sometimes be used in defence too. The chapter then explores the diversity of ways electricity is produced and used by weakly electric fish. Meanwhile, the platypus can use their electric sense both to avoid objects in the water and to locate small prey items. The echidna also has receptors on the tip of its snout that respond to electric information, but its electric sense seems quite limited. Finally, the chapter considers how bees are able to detect electric fields associated with flowers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信