Bharath G. Kashyap, P. Theofanopoulos, Yiran Cui, G. Trichopoulos
{"title":"带有抑制量化瓣的900元222.5 GHz单比特反射表面的制备与表征","authors":"Bharath G. Kashyap, P. Theofanopoulos, Yiran Cui, G. Trichopoulos","doi":"10.23919/USNC-URSINRSM51531.2021.9336511","DOIUrl":null,"url":null,"abstract":"We present a topology for suppressing quantization lobes in 1-bit reconfigurable reflective surfaces (RRSs). RRSs are planar surfaces that redirect the imping waves to the desired direction through phase modulation. For single-bit modulation, plane-wave illuminated RRSs exhibit quantization lobes due to the limited number of available phase bits. To eliminate such lobes, we randomize the quantization error by employing a fixed but random phase delay in every unit-cell of the RRS. Specifically, we focus on the fabrication and characterization of a mmWave single-layer, 1-bit, 30×30 randomized RRS designed at 222.5 GHz. The quasi-optical RCS characterization of the fabricated RRS demonstrates the successful suppression of the quantization lobe using the proposed technique.","PeriodicalId":180982,"journal":{"name":"2021 United States National Committee of URSI National Radio Science Meeting (USNC-URSI NRSM)","volume":"125 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fabrication and Characterization of a 900-Element 222.5 GHz Single-bit Reflective Surface with Suppressed Quantization Lobes\",\"authors\":\"Bharath G. Kashyap, P. Theofanopoulos, Yiran Cui, G. Trichopoulos\",\"doi\":\"10.23919/USNC-URSINRSM51531.2021.9336511\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a topology for suppressing quantization lobes in 1-bit reconfigurable reflective surfaces (RRSs). RRSs are planar surfaces that redirect the imping waves to the desired direction through phase modulation. For single-bit modulation, plane-wave illuminated RRSs exhibit quantization lobes due to the limited number of available phase bits. To eliminate such lobes, we randomize the quantization error by employing a fixed but random phase delay in every unit-cell of the RRS. Specifically, we focus on the fabrication and characterization of a mmWave single-layer, 1-bit, 30×30 randomized RRS designed at 222.5 GHz. The quasi-optical RCS characterization of the fabricated RRS demonstrates the successful suppression of the quantization lobe using the proposed technique.\",\"PeriodicalId\":180982,\"journal\":{\"name\":\"2021 United States National Committee of URSI National Radio Science Meeting (USNC-URSI NRSM)\",\"volume\":\"125 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 United States National Committee of URSI National Radio Science Meeting (USNC-URSI NRSM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/USNC-URSINRSM51531.2021.9336511\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 United States National Committee of URSI National Radio Science Meeting (USNC-URSI NRSM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/USNC-URSINRSM51531.2021.9336511","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fabrication and Characterization of a 900-Element 222.5 GHz Single-bit Reflective Surface with Suppressed Quantization Lobes
We present a topology for suppressing quantization lobes in 1-bit reconfigurable reflective surfaces (RRSs). RRSs are planar surfaces that redirect the imping waves to the desired direction through phase modulation. For single-bit modulation, plane-wave illuminated RRSs exhibit quantization lobes due to the limited number of available phase bits. To eliminate such lobes, we randomize the quantization error by employing a fixed but random phase delay in every unit-cell of the RRS. Specifically, we focus on the fabrication and characterization of a mmWave single-layer, 1-bit, 30×30 randomized RRS designed at 222.5 GHz. The quasi-optical RCS characterization of the fabricated RRS demonstrates the successful suppression of the quantization lobe using the proposed technique.