使用传感器和机器学习预防偏头痛的物联网环境分析仪

Rosemarie J. Day, H. Salehi, Mahsa Javadi
{"title":"使用传感器和机器学习预防偏头痛的物联网环境分析仪","authors":"Rosemarie J. Day, H. Salehi, Mahsa Javadi","doi":"10.1109/ICMLA.2019.00239","DOIUrl":null,"url":null,"abstract":"Everyday migraines are affecting more than one billion people worldwide. This headache disorder is classified as the sixth most disabling disease in the world. Migraines are just one chronic illness affected by environmental triggers due to changes that occur inside the home. Migraines share this characteristic with sinus headaches and thus are often misdiagnosed. In this research work, an iOS-based environmental analyzer was designed, implemented and evaluated for migraine sufferers with the use of sensors. After the data collection and cleaning, five machine learning model were used to estimate prediction accuracy of migraines in terms of the environment. The data was evaluated against the models using K-Fold cross validation. The algorithm accuracy comparison showed that Linear Discriminant Analysis (LDA) produced highest accuracy for the testing data at a mean of 0.938. Preliminary results demonstrate the feasibility of using machine learning algorithms to perform the automated recognition of migraine trigger areas in the environment.","PeriodicalId":436714,"journal":{"name":"2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"IoT Environmental Analyzer using Sensors and Machine Learning for Migraine Occurrence Prevention\",\"authors\":\"Rosemarie J. Day, H. Salehi, Mahsa Javadi\",\"doi\":\"10.1109/ICMLA.2019.00239\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Everyday migraines are affecting more than one billion people worldwide. This headache disorder is classified as the sixth most disabling disease in the world. Migraines are just one chronic illness affected by environmental triggers due to changes that occur inside the home. Migraines share this characteristic with sinus headaches and thus are often misdiagnosed. In this research work, an iOS-based environmental analyzer was designed, implemented and evaluated for migraine sufferers with the use of sensors. After the data collection and cleaning, five machine learning model were used to estimate prediction accuracy of migraines in terms of the environment. The data was evaluated against the models using K-Fold cross validation. The algorithm accuracy comparison showed that Linear Discriminant Analysis (LDA) produced highest accuracy for the testing data at a mean of 0.938. Preliminary results demonstrate the feasibility of using machine learning algorithms to perform the automated recognition of migraine trigger areas in the environment.\",\"PeriodicalId\":436714,\"journal\":{\"name\":\"2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA)\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLA.2019.00239\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2019.00239","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

日常偏头痛影响着全球超过10亿人。这种头痛疾病被列为世界上第六大致残疾病。偏头痛只是一种受环境因素影响的慢性疾病,由于家庭内部发生的变化。偏头痛与窦性头痛有相同的特点,因此常被误诊。在本研究中,设计了一种基于ios的环境分析仪,并利用传感器对偏头痛患者进行了环境分析仪的设计、实现和评估。在数据收集和清理后,使用5个机器学习模型来估计偏头痛在环境方面的预测精度。使用K-Fold交叉验证对模型进行数据评估。算法精度比较表明,线性判别分析(Linear Discriminant Analysis, LDA)对检测数据的准确率最高,均值为0.938。初步结果表明,使用机器学习算法对环境中的偏头痛触发区域进行自动识别是可行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
IoT Environmental Analyzer using Sensors and Machine Learning for Migraine Occurrence Prevention
Everyday migraines are affecting more than one billion people worldwide. This headache disorder is classified as the sixth most disabling disease in the world. Migraines are just one chronic illness affected by environmental triggers due to changes that occur inside the home. Migraines share this characteristic with sinus headaches and thus are often misdiagnosed. In this research work, an iOS-based environmental analyzer was designed, implemented and evaluated for migraine sufferers with the use of sensors. After the data collection and cleaning, five machine learning model were used to estimate prediction accuracy of migraines in terms of the environment. The data was evaluated against the models using K-Fold cross validation. The algorithm accuracy comparison showed that Linear Discriminant Analysis (LDA) produced highest accuracy for the testing data at a mean of 0.938. Preliminary results demonstrate the feasibility of using machine learning algorithms to perform the automated recognition of migraine trigger areas in the environment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信