利用深度卷积神经网络减轻智能电网中假数据注入攻击的影响

Q.Y. Ge, C. Jiao
{"title":"利用深度卷积神经网络减轻智能电网中假数据注入攻击的影响","authors":"Q.Y. Ge, C. Jiao","doi":"10.1109/ICEIEC49280.2020.9152355","DOIUrl":null,"url":null,"abstract":"The smart grid is vulnerable to cyberattacks due to the integration of information and communication technologies (ICT). The false data injection attack (FDIA) is a type of cyberattack that is against the state estimation of the power grid. It is imperative to mitigate the impacts of such a stealthy attack. In this paper, a deep convolutional neural network scheme was proposed. It has been evaluated on the IEEE 39-bus system using real-world load data and performs better than existed approaches.","PeriodicalId":352285,"journal":{"name":"2020 IEEE 10th International Conference on Electronics Information and Emergency Communication (ICEIEC)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Mitigating the Impacts of False Data Injection Attacks in Smart Grids using Deep Convolutional Neural Networks\",\"authors\":\"Q.Y. Ge, C. Jiao\",\"doi\":\"10.1109/ICEIEC49280.2020.9152355\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The smart grid is vulnerable to cyberattacks due to the integration of information and communication technologies (ICT). The false data injection attack (FDIA) is a type of cyberattack that is against the state estimation of the power grid. It is imperative to mitigate the impacts of such a stealthy attack. In this paper, a deep convolutional neural network scheme was proposed. It has been evaluated on the IEEE 39-bus system using real-world load data and performs better than existed approaches.\",\"PeriodicalId\":352285,\"journal\":{\"name\":\"2020 IEEE 10th International Conference on Electronics Information and Emergency Communication (ICEIEC)\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 10th International Conference on Electronics Information and Emergency Communication (ICEIEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEIEC49280.2020.9152355\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 10th International Conference on Electronics Information and Emergency Communication (ICEIEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEIEC49280.2020.9152355","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

由于信息通信技术(ICT)的融合,智能电网容易受到网络攻击。虚假数据注入攻击(FDIA)是一种针对电网状态估计的网络攻击。当务之急是减轻这种隐形攻击的影响。本文提出了一种深度卷积神经网络方案。它已经在IEEE 39总线系统上使用实际负载数据进行了评估,并且比现有的方法性能更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mitigating the Impacts of False Data Injection Attacks in Smart Grids using Deep Convolutional Neural Networks
The smart grid is vulnerable to cyberattacks due to the integration of information and communication technologies (ICT). The false data injection attack (FDIA) is a type of cyberattack that is against the state estimation of the power grid. It is imperative to mitigate the impacts of such a stealthy attack. In this paper, a deep convolutional neural network scheme was proposed. It has been evaluated on the IEEE 39-bus system using real-world load data and performs better than existed approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信