基于局部时间自相似度的振动特征提取用于滚动轴承故障诊断

Shichen Zeng, Guoliang Lu, Peng Yan
{"title":"基于局部时间自相似度的振动特征提取用于滚动轴承故障诊断","authors":"Shichen Zeng, Guoliang Lu, Peng Yan","doi":"10.1109/ICPHM.2019.8819380","DOIUrl":null,"url":null,"abstract":"This paper presents a new method for rolling bearing fault diagnosis. The novel vibration feature extraction is learned with local temporal self-similarities (TSS) continuously from collected vibration signals. The bag-of-words (BoW) scheme is then employed for fault classification taking advantages of these features. We investigated the effectiveness of the framework on the publicly-available Case Western Reserve University (CWRU) data set. We also compare the method with state-of-the-art approaches. The result demonstrates excellent performance of the proposed method, outperforming those compared state-of-the-art approaches.","PeriodicalId":113460,"journal":{"name":"2019 IEEE International Conference on Prognostics and Health Management (ICPHM)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Vibration feature extraction using local temporal self-similarity for rolling bearing fault diagnosis\",\"authors\":\"Shichen Zeng, Guoliang Lu, Peng Yan\",\"doi\":\"10.1109/ICPHM.2019.8819380\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a new method for rolling bearing fault diagnosis. The novel vibration feature extraction is learned with local temporal self-similarities (TSS) continuously from collected vibration signals. The bag-of-words (BoW) scheme is then employed for fault classification taking advantages of these features. We investigated the effectiveness of the framework on the publicly-available Case Western Reserve University (CWRU) data set. We also compare the method with state-of-the-art approaches. The result demonstrates excellent performance of the proposed method, outperforming those compared state-of-the-art approaches.\",\"PeriodicalId\":113460,\"journal\":{\"name\":\"2019 IEEE International Conference on Prognostics and Health Management (ICPHM)\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Conference on Prognostics and Health Management (ICPHM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPHM.2019.8819380\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Prognostics and Health Management (ICPHM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPHM.2019.8819380","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

提出了一种滚动轴承故障诊断的新方法。从采集到的振动信号中,利用局部时间自相似度(TSS)连续学习新的振动特征提取。然后利用这些特征,采用词袋(BoW)方案进行故障分类。我们调查了该框架在凯斯西储大学(CWRU)公开数据集上的有效性。我们还将该方法与最先进的方法进行了比较。结果表明,所提出的方法具有优异的性能,优于那些比较先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Vibration feature extraction using local temporal self-similarity for rolling bearing fault diagnosis
This paper presents a new method for rolling bearing fault diagnosis. The novel vibration feature extraction is learned with local temporal self-similarities (TSS) continuously from collected vibration signals. The bag-of-words (BoW) scheme is then employed for fault classification taking advantages of these features. We investigated the effectiveness of the framework on the publicly-available Case Western Reserve University (CWRU) data set. We also compare the method with state-of-the-art approaches. The result demonstrates excellent performance of the proposed method, outperforming those compared state-of-the-art approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信