二次高斯直接多端信源编码的最大和率损耗

Yang Yang, Zixiang Xiong
{"title":"二次高斯直接多端信源编码的最大和率损耗","authors":"Yang Yang, Zixiang Xiong","doi":"10.1109/ITA.2008.4601088","DOIUrl":null,"url":null,"abstract":"Wagner et al. recently characterized the rate region for the quadratic Gaussian two-terminal source coding problem. They also show that the Berger-Tung sum-rate bound is tight in the symmetric case, where all sources are positively symmetric and all target distortions are equal. This work studies the sum-rate loss of quadratic Gaussian direct multiterminal source coding. We first give the minimum sum-rate for joint encoding of Gaussian sources in the symmetric case, we than show that the supremum of the sum-rate loss due to distributed encoding in this case is 1/2 log2 5/4 = 0.161 b/s when L = 2 and increases in the order of radic(L)/2 log2 e b/s as the number of terminals L goes to infinity. The supremum sum-rate loss of 0.161 b/s in the symmetric case equals to that in general quadratic Gaussian two-terminal source coding without the symmetric assumption. It is conjectured that this equality holds for any number of terminals.","PeriodicalId":345196,"journal":{"name":"2008 Information Theory and Applications Workshop","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"The supremum sum-rate loss of quadratic Gaussian direct multiterminal source coding\",\"authors\":\"Yang Yang, Zixiang Xiong\",\"doi\":\"10.1109/ITA.2008.4601088\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wagner et al. recently characterized the rate region for the quadratic Gaussian two-terminal source coding problem. They also show that the Berger-Tung sum-rate bound is tight in the symmetric case, where all sources are positively symmetric and all target distortions are equal. This work studies the sum-rate loss of quadratic Gaussian direct multiterminal source coding. We first give the minimum sum-rate for joint encoding of Gaussian sources in the symmetric case, we than show that the supremum of the sum-rate loss due to distributed encoding in this case is 1/2 log2 5/4 = 0.161 b/s when L = 2 and increases in the order of radic(L)/2 log2 e b/s as the number of terminals L goes to infinity. The supremum sum-rate loss of 0.161 b/s in the symmetric case equals to that in general quadratic Gaussian two-terminal source coding without the symmetric assumption. It is conjectured that this equality holds for any number of terminals.\",\"PeriodicalId\":345196,\"journal\":{\"name\":\"2008 Information Theory and Applications Workshop\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 Information Theory and Applications Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITA.2008.4601088\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Information Theory and Applications Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITA.2008.4601088","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

Wagner等人最近对二次高斯双端源编码问题的速率区域进行了表征。他们还表明,在对称情况下,所有源都是正对称的,所有目标畸变都是相等的,Berger-Tung和速率界是紧的。本文研究了二次高斯直接多端信源编码的和率损耗。我们首先给出了对称情况下高斯源联合编码的最小和速率,然后证明了在这种情况下,分布式编码导致的和速率损失的最大值是1/2 log2 5/4 = 0.161 b/s,并且随着终端数L趋于无穷,以根号(L)/2 log2 e /s的顺序增加。对称情况下的最大和速率损耗为0.161 b/s,与一般二次高斯双端码源编码不对称情况下的最大和速率损耗相等。据推测,这个等式对任意数量的终端都成立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The supremum sum-rate loss of quadratic Gaussian direct multiterminal source coding
Wagner et al. recently characterized the rate region for the quadratic Gaussian two-terminal source coding problem. They also show that the Berger-Tung sum-rate bound is tight in the symmetric case, where all sources are positively symmetric and all target distortions are equal. This work studies the sum-rate loss of quadratic Gaussian direct multiterminal source coding. We first give the minimum sum-rate for joint encoding of Gaussian sources in the symmetric case, we than show that the supremum of the sum-rate loss due to distributed encoding in this case is 1/2 log2 5/4 = 0.161 b/s when L = 2 and increases in the order of radic(L)/2 log2 e b/s as the number of terminals L goes to infinity. The supremum sum-rate loss of 0.161 b/s in the symmetric case equals to that in general quadratic Gaussian two-terminal source coding without the symmetric assumption. It is conjectured that this equality holds for any number of terminals.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信