bert对L2生产中的本地干扰敏感吗?

Zixin Tang, P. Mitra, D. Reitter
{"title":"bert对L2生产中的本地干扰敏感吗?","authors":"Zixin Tang, P. Mitra, D. Reitter","doi":"10.18653/v1/2021.insights-1.6","DOIUrl":null,"url":null,"abstract":"With the essays part from The International Corpus Network of Asian Learners of English (ICNALE) and the TOEFL11 corpus, we fine-tuned neural language models based on BERT to predict English learners’ native languages. Results showed neural models can learn to represent and detect such native language impacts, but multilingually trained models have no advantage in doing so.","PeriodicalId":166055,"journal":{"name":"Proceedings of the Second Workshop on Insights from Negative Results in NLP","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Are BERTs Sensitive to Native Interference in L2 Production?\",\"authors\":\"Zixin Tang, P. Mitra, D. Reitter\",\"doi\":\"10.18653/v1/2021.insights-1.6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the essays part from The International Corpus Network of Asian Learners of English (ICNALE) and the TOEFL11 corpus, we fine-tuned neural language models based on BERT to predict English learners’ native languages. Results showed neural models can learn to represent and detect such native language impacts, but multilingually trained models have no advantage in doing so.\",\"PeriodicalId\":166055,\"journal\":{\"name\":\"Proceedings of the Second Workshop on Insights from Negative Results in NLP\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Second Workshop on Insights from Negative Results in NLP\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18653/v1/2021.insights-1.6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Second Workshop on Insights from Negative Results in NLP","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2021.insights-1.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

利用来自亚洲英语学习者国际语料库网络(ICNALE)和托福11语料库的论文部分,我们对基于BERT的神经语言模型进行了微调,以预测英语学习者的母语。结果表明,神经模型可以学习表征和检测这些母语影响,但多语言训练的模型在这方面没有优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Are BERTs Sensitive to Native Interference in L2 Production?
With the essays part from The International Corpus Network of Asian Learners of English (ICNALE) and the TOEFL11 corpus, we fine-tuned neural language models based on BERT to predict English learners’ native languages. Results showed neural models can learn to represent and detect such native language impacts, but multilingually trained models have no advantage in doing so.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信