广义似然比判别分析

Hung-Shin Lee, Berlin Chen
{"title":"广义似然比判别分析","authors":"Hung-Shin Lee, Berlin Chen","doi":"10.1109/ASRU.2009.5373392","DOIUrl":null,"url":null,"abstract":"In the past several decades, classifier-independent front-end feature extraction, where the derivation of acoustic features is lightly associated with the back-end model training or classification, has been prominently used in various pattern recognition tasks, including automatic speech recognition (ASR). In this paper, we present a novel discriminative feature transformation, named generalized likelihood ratio discriminant analysis (GLRDA), on the basis of the likelihood ratio test (LRT). It attempts to seek a lower dimensional feature subspace by making the most confusing situation, described by the null hypothesis, as unlikely to happen as possible without the homoscedastic assumption on class distributions. We also show that the classical linear discriminant analysis (LDA) and its well-known extension - heteroscedastic linear discriminant analysis (HLDA) can be regarded as two special cases of our proposed method. The empirical class confusion information can be further incorporated into GLRDA for better recognition performance. Experimental results demonstrate that GLRDA and its variant can yield moderate performance improvements over HLDA and LDA for the large vocabulary continuous speech recognition (LVCSR) task.","PeriodicalId":292194,"journal":{"name":"2009 IEEE Workshop on Automatic Speech Recognition & Understanding","volume":"144 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Generalized likelihood ratio discriminant analysis\",\"authors\":\"Hung-Shin Lee, Berlin Chen\",\"doi\":\"10.1109/ASRU.2009.5373392\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the past several decades, classifier-independent front-end feature extraction, where the derivation of acoustic features is lightly associated with the back-end model training or classification, has been prominently used in various pattern recognition tasks, including automatic speech recognition (ASR). In this paper, we present a novel discriminative feature transformation, named generalized likelihood ratio discriminant analysis (GLRDA), on the basis of the likelihood ratio test (LRT). It attempts to seek a lower dimensional feature subspace by making the most confusing situation, described by the null hypothesis, as unlikely to happen as possible without the homoscedastic assumption on class distributions. We also show that the classical linear discriminant analysis (LDA) and its well-known extension - heteroscedastic linear discriminant analysis (HLDA) can be regarded as two special cases of our proposed method. The empirical class confusion information can be further incorporated into GLRDA for better recognition performance. Experimental results demonstrate that GLRDA and its variant can yield moderate performance improvements over HLDA and LDA for the large vocabulary continuous speech recognition (LVCSR) task.\",\"PeriodicalId\":292194,\"journal\":{\"name\":\"2009 IEEE Workshop on Automatic Speech Recognition & Understanding\",\"volume\":\"144 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE Workshop on Automatic Speech Recognition & Understanding\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASRU.2009.5373392\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Workshop on Automatic Speech Recognition & Understanding","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASRU.2009.5373392","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

在过去的几十年里,独立于分类器的前端特征提取在各种模式识别任务中得到了突出的应用,包括自动语音识别(ASR),其中声学特征的推导与后端模型训练或分类很少相关。在似然比检验(LRT)的基础上,提出了一种新的判别特征变换——广义似然比判别分析(GLRDA)。它试图通过使最令人困惑的情况(由零假设描述)在没有类分布的同方差假设的情况下尽可能不可能发生,来寻求更低维的特征子空间。我们还证明了经典的线性判别分析(LDA)及其众所周知的扩展异方差线性判别分析(HLDA)可以看作是我们提出的方法的两种特殊情况。可以将经验类混淆信息进一步纳入GLRDA中,以获得更好的识别性能。实验结果表明,在大词汇量连续语音识别(LVCSR)任务中,GLRDA及其变体比HLDA和LDA有适度的性能提升。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generalized likelihood ratio discriminant analysis
In the past several decades, classifier-independent front-end feature extraction, where the derivation of acoustic features is lightly associated with the back-end model training or classification, has been prominently used in various pattern recognition tasks, including automatic speech recognition (ASR). In this paper, we present a novel discriminative feature transformation, named generalized likelihood ratio discriminant analysis (GLRDA), on the basis of the likelihood ratio test (LRT). It attempts to seek a lower dimensional feature subspace by making the most confusing situation, described by the null hypothesis, as unlikely to happen as possible without the homoscedastic assumption on class distributions. We also show that the classical linear discriminant analysis (LDA) and its well-known extension - heteroscedastic linear discriminant analysis (HLDA) can be regarded as two special cases of our proposed method. The empirical class confusion information can be further incorporated into GLRDA for better recognition performance. Experimental results demonstrate that GLRDA and its variant can yield moderate performance improvements over HLDA and LDA for the large vocabulary continuous speech recognition (LVCSR) task.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信