基于梯度和纹理特征的植物叶片病害分类

R. Kaur, Sanjay Singla
{"title":"基于梯度和纹理特征的植物叶片病害分类","authors":"R. Kaur, Sanjay Singla","doi":"10.1145/2979779.2979875","DOIUrl":null,"url":null,"abstract":"This paper presents a new technique of classification of Plant Leaf Disease (Potato Late Blight) using gradient and texture features and Artificial Neural Networks. This technique uses Artificial Neural Networks to Segment an Image which is initially segmented using unsupervised Fuzzy-C-means Clustering Algorithm. In this proposed approach decorrelation extending is utilized to enhance the shading contrasts as a part of the information pictures. At that point Fuzzy C-mean bunching is connected to portion the sickness influenced region which additionally incorporate foundation with same shading attributes. At last we propose to utilize the neural system based way to deal with group the malady influenced locales from the comparable shading textured foundation. The results of our work are promising.","PeriodicalId":298730,"journal":{"name":"Proceedings of the International Conference on Advances in Information Communication Technology & Computing","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Classification of Plant Leaf Diseases Using Gradient and Texture Feature\",\"authors\":\"R. Kaur, Sanjay Singla\",\"doi\":\"10.1145/2979779.2979875\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a new technique of classification of Plant Leaf Disease (Potato Late Blight) using gradient and texture features and Artificial Neural Networks. This technique uses Artificial Neural Networks to Segment an Image which is initially segmented using unsupervised Fuzzy-C-means Clustering Algorithm. In this proposed approach decorrelation extending is utilized to enhance the shading contrasts as a part of the information pictures. At that point Fuzzy C-mean bunching is connected to portion the sickness influenced region which additionally incorporate foundation with same shading attributes. At last we propose to utilize the neural system based way to deal with group the malady influenced locales from the comparable shading textured foundation. The results of our work are promising.\",\"PeriodicalId\":298730,\"journal\":{\"name\":\"Proceedings of the International Conference on Advances in Information Communication Technology & Computing\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the International Conference on Advances in Information Communication Technology & Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2979779.2979875\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Conference on Advances in Information Communication Technology & Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2979779.2979875","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

提出了一种利用梯度特征、纹理特征和人工神经网络对马铃薯晚疫病进行分类的新方法。该技术使用人工神经网络对图像进行分割,该图像最初使用无监督模糊c均值聚类算法进行分割。在该方法中,利用去相关扩展来增强作为信息图像一部分的阴影对比度。此时,模糊c均值聚类连接到部分疾病影响区域,该区域另外包含具有相同阴影属性的基础。最后,我们提出了利用基于神经系统的方法,从可比阴影纹理基础上对疾病影响区域进行分组处理。我们工作的结果是有希望的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Classification of Plant Leaf Diseases Using Gradient and Texture Feature
This paper presents a new technique of classification of Plant Leaf Disease (Potato Late Blight) using gradient and texture features and Artificial Neural Networks. This technique uses Artificial Neural Networks to Segment an Image which is initially segmented using unsupervised Fuzzy-C-means Clustering Algorithm. In this proposed approach decorrelation extending is utilized to enhance the shading contrasts as a part of the information pictures. At that point Fuzzy C-mean bunching is connected to portion the sickness influenced region which additionally incorporate foundation with same shading attributes. At last we propose to utilize the neural system based way to deal with group the malady influenced locales from the comparable shading textured foundation. The results of our work are promising.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信