{"title":"使用表面肌电信号的模式识别系统通过设置多参考来提高性能","authors":"Minkyu Kim, Keehoon Kim","doi":"10.1109/URAI.2013.6677460","DOIUrl":null,"url":null,"abstract":"This paper proposes a special technique for pattern classification problems using the sEMG signal from human forearm muscles. For improvement of classification accuracy, a multi-reference is set for each class so that the classifier can cover a wide range of obtained signals for training. The results of classification accuracy through an off-line simulation were analyzed to validate the proposed concept.","PeriodicalId":431699,"journal":{"name":"2013 10th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Increasing performance of a pattern recognition system using a sEMG signal by setting multi-references\",\"authors\":\"Minkyu Kim, Keehoon Kim\",\"doi\":\"10.1109/URAI.2013.6677460\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a special technique for pattern classification problems using the sEMG signal from human forearm muscles. For improvement of classification accuracy, a multi-reference is set for each class so that the classifier can cover a wide range of obtained signals for training. The results of classification accuracy through an off-line simulation were analyzed to validate the proposed concept.\",\"PeriodicalId\":431699,\"journal\":{\"name\":\"2013 10th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI)\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 10th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/URAI.2013.6677460\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 10th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/URAI.2013.6677460","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Increasing performance of a pattern recognition system using a sEMG signal by setting multi-references
This paper proposes a special technique for pattern classification problems using the sEMG signal from human forearm muscles. For improvement of classification accuracy, a multi-reference is set for each class so that the classifier can cover a wide range of obtained signals for training. The results of classification accuracy through an off-line simulation were analyzed to validate the proposed concept.