解析寄存器分配

D. Koes, S. Goldstein
{"title":"解析寄存器分配","authors":"D. Koes, S. Goldstein","doi":"10.1145/1543820.1543824","DOIUrl":null,"url":null,"abstract":"Register allocation is a fundamental part of any optimizing compiler. Effectively managing the limited register resources of the constrained architectures commonly found in embedded systems is essential in order to maximize code quality. In this paper we deconstruct the register allocation problem into distinct components: coalescing, spilling, move insertion, and assignment. Using an optimal register allocation framework, we empirically evaluate the importance of each of the components, the impact of component integration, and the effectiveness of existing heuristics. We evaluate code quality both in terms of code performance and code size and consider four distinct instruction set architectures: ARM, Thumb, x86, and x86-64. The results of our investigation reveal general principles for register allocation design.","PeriodicalId":375451,"journal":{"name":"Software and Compilers for Embedded Systems","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Register allocation deconstructed\",\"authors\":\"D. Koes, S. Goldstein\",\"doi\":\"10.1145/1543820.1543824\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Register allocation is a fundamental part of any optimizing compiler. Effectively managing the limited register resources of the constrained architectures commonly found in embedded systems is essential in order to maximize code quality. In this paper we deconstruct the register allocation problem into distinct components: coalescing, spilling, move insertion, and assignment. Using an optimal register allocation framework, we empirically evaluate the importance of each of the components, the impact of component integration, and the effectiveness of existing heuristics. We evaluate code quality both in terms of code performance and code size and consider four distinct instruction set architectures: ARM, Thumb, x86, and x86-64. The results of our investigation reveal general principles for register allocation design.\",\"PeriodicalId\":375451,\"journal\":{\"name\":\"Software and Compilers for Embedded Systems\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Software and Compilers for Embedded Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1543820.1543824\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Software and Compilers for Embedded Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1543820.1543824","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

寄存器分配是任何优化编译器的基本部分。为了最大限度地提高代码质量,有效地管理嵌入式系统中常见的受限架构的有限寄存器资源是必不可少的。本文将寄存器分配问题分解为不同的组成部分:合并、溢出、移动插入和赋值。利用最优寄存器分配框架,我们对每个组件的重要性、组件集成的影响以及现有启发式的有效性进行了实证评估。我们从代码性能和代码大小两方面评估代码质量,并考虑四种不同的指令集架构:ARM、Thumb、x86和x86-64。我们的调查结果揭示了寄存器分配设计的一般原则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Register allocation deconstructed
Register allocation is a fundamental part of any optimizing compiler. Effectively managing the limited register resources of the constrained architectures commonly found in embedded systems is essential in order to maximize code quality. In this paper we deconstruct the register allocation problem into distinct components: coalescing, spilling, move insertion, and assignment. Using an optimal register allocation framework, we empirically evaluate the importance of each of the components, the impact of component integration, and the effectiveness of existing heuristics. We evaluate code quality both in terms of code performance and code size and consider four distinct instruction set architectures: ARM, Thumb, x86, and x86-64. The results of our investigation reveal general principles for register allocation design.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信