基于CPU-GPU组成的快速原型HCP的张量分解

R. I. Acosta-Quiñonez, R. Rodriguez-Avila
{"title":"基于CPU-GPU组成的快速原型HCP的张量分解","authors":"R. I. Acosta-Quiñonez, R. Rodriguez-Avila","doi":"10.1109/LATINCOM48065.2019.8937926","DOIUrl":null,"url":null,"abstract":"Tensor decomposition has gained special attention in modern implementations for wide range of digital signal processing (DSP) areas. This decomposition has a transcendental role because most of DSP systems have a better representation when using models indexed with more than two indexes. The main drawback is that Tensor decomposition is a computationally-demanding algorithm and ad-hoc designs and implementations are costly and require long design periods. This paper presents the prototyping of Tensor decomposition as a proof-of-concept (PoC) over a high-performance CPU-GPU Heterogeneous Computing Platform (HCP)-based DSP blocks exposing variable levels of parallelism, throughput, resource utilization and with a modular approach that eliminates the overhead of designing ad-hoc architectures. Benefits of using the modular approach of this prototyping platform for implementing the Tensor decomposition is clear as the design time reduces and a clear idea of particular requirements for a final implementation is obtained from early stages of the PoC development.","PeriodicalId":120312,"journal":{"name":"2019 IEEE Latin-American Conference on Communications (LATINCOM)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Tensor decomposition over a Fast-Prototyping HCP composed by CPU-GPU\",\"authors\":\"R. I. Acosta-Quiñonez, R. Rodriguez-Avila\",\"doi\":\"10.1109/LATINCOM48065.2019.8937926\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tensor decomposition has gained special attention in modern implementations for wide range of digital signal processing (DSP) areas. This decomposition has a transcendental role because most of DSP systems have a better representation when using models indexed with more than two indexes. The main drawback is that Tensor decomposition is a computationally-demanding algorithm and ad-hoc designs and implementations are costly and require long design periods. This paper presents the prototyping of Tensor decomposition as a proof-of-concept (PoC) over a high-performance CPU-GPU Heterogeneous Computing Platform (HCP)-based DSP blocks exposing variable levels of parallelism, throughput, resource utilization and with a modular approach that eliminates the overhead of designing ad-hoc architectures. Benefits of using the modular approach of this prototyping platform for implementing the Tensor decomposition is clear as the design time reduces and a clear idea of particular requirements for a final implementation is obtained from early stages of the PoC development.\",\"PeriodicalId\":120312,\"journal\":{\"name\":\"2019 IEEE Latin-American Conference on Communications (LATINCOM)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Latin-American Conference on Communications (LATINCOM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LATINCOM48065.2019.8937926\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Latin-American Conference on Communications (LATINCOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LATINCOM48065.2019.8937926","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

张量分解在数字信号处理(DSP)领域的现代实现中得到了特别的关注。这种分解具有超越作用,因为大多数DSP系统在使用具有两个以上索引的模型时具有更好的表示。主要的缺点是张量分解是一种计算要求很高的算法,特别的设计和实现是昂贵的,需要很长的设计周期。本文提出了张量分解的原型,作为基于高性能CPU-GPU异构计算平台(HCP)的DSP块的概念验证(PoC),揭示了不同级别的并行性,吞吐量,资源利用率,并采用模块化方法消除了设计ad-hoc架构的开销。使用这种原型平台的模块化方法来实现张量分解的好处是显而易见的,因为设计时间减少了,并且从PoC开发的早期阶段获得了最终实现的特定需求的清晰概念。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tensor decomposition over a Fast-Prototyping HCP composed by CPU-GPU
Tensor decomposition has gained special attention in modern implementations for wide range of digital signal processing (DSP) areas. This decomposition has a transcendental role because most of DSP systems have a better representation when using models indexed with more than two indexes. The main drawback is that Tensor decomposition is a computationally-demanding algorithm and ad-hoc designs and implementations are costly and require long design periods. This paper presents the prototyping of Tensor decomposition as a proof-of-concept (PoC) over a high-performance CPU-GPU Heterogeneous Computing Platform (HCP)-based DSP blocks exposing variable levels of parallelism, throughput, resource utilization and with a modular approach that eliminates the overhead of designing ad-hoc architectures. Benefits of using the modular approach of this prototyping platform for implementing the Tensor decomposition is clear as the design time reduces and a clear idea of particular requirements for a final implementation is obtained from early stages of the PoC development.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信