{"title":"使用本地键扩展MapReduce框架","authors":"Yifeng Chen, Bei Wang, Xiaolin Wang","doi":"10.1145/3437801.3441607","DOIUrl":null,"url":null,"abstract":"This paper extends the existing MapReduce framework to allow the user programmer to control data locality and reduce communication costs of the shuffle operations in iterative in-memory computation. The programming extension is fully consistent with the style of MapReduce and allows straightforward fast implementation.","PeriodicalId":124852,"journal":{"name":"Proceedings of the 26th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Extending MapReduce framework with locality keys\",\"authors\":\"Yifeng Chen, Bei Wang, Xiaolin Wang\",\"doi\":\"10.1145/3437801.3441607\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper extends the existing MapReduce framework to allow the user programmer to control data locality and reduce communication costs of the shuffle operations in iterative in-memory computation. The programming extension is fully consistent with the style of MapReduce and allows straightforward fast implementation.\",\"PeriodicalId\":124852,\"journal\":{\"name\":\"Proceedings of the 26th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 26th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3437801.3441607\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 26th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3437801.3441607","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
This paper extends the existing MapReduce framework to allow the user programmer to control data locality and reduce communication costs of the shuffle operations in iterative in-memory computation. The programming extension is fully consistent with the style of MapReduce and allows straightforward fast implementation.