基于轨迹估计的摄像机网络定位

N. Anjum, M. J. Mirza, A. Cavallaro
{"title":"基于轨迹估计的摄像机网络定位","authors":"N. Anjum, M. J. Mirza, A. Cavallaro","doi":"10.1109/ICET.2011.6048454","DOIUrl":null,"url":null,"abstract":"We present an algorithm for non-overlapping camera network localization using trajectory estimation. The localization refers to the extrinsic calibration of a network i.e., the recovery of relative position and orientation of each camera in the network on a common ground plane coordinate system. To this end, Kalman filtering is initially used to model the observed trajectories in each camera's field of view. This information is then used to estimate the missing trajectory information in the unobserved regions by integrating the results of forward and backward linear regression estimation from adjacent cameras. These estimated trajectories are then filtered and used to recover the relative position and orientation of the cameras by analyzing the estimated and observed exit and entry points of an object in each camera's field of view. We fix one camera as a reference and find the final configuration of the network by adjusting the remaining cameras with respect to this reference. We evaluate performance of the algorithm on both simulated and real data and compare the results with state-of-the-art approaches.","PeriodicalId":167049,"journal":{"name":"2011 7th International Conference on Emerging Technologies","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Camera network localization using trajectory estimation\",\"authors\":\"N. Anjum, M. J. Mirza, A. Cavallaro\",\"doi\":\"10.1109/ICET.2011.6048454\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present an algorithm for non-overlapping camera network localization using trajectory estimation. The localization refers to the extrinsic calibration of a network i.e., the recovery of relative position and orientation of each camera in the network on a common ground plane coordinate system. To this end, Kalman filtering is initially used to model the observed trajectories in each camera's field of view. This information is then used to estimate the missing trajectory information in the unobserved regions by integrating the results of forward and backward linear regression estimation from adjacent cameras. These estimated trajectories are then filtered and used to recover the relative position and orientation of the cameras by analyzing the estimated and observed exit and entry points of an object in each camera's field of view. We fix one camera as a reference and find the final configuration of the network by adjusting the remaining cameras with respect to this reference. We evaluate performance of the algorithm on both simulated and real data and compare the results with state-of-the-art approaches.\",\"PeriodicalId\":167049,\"journal\":{\"name\":\"2011 7th International Conference on Emerging Technologies\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 7th International Conference on Emerging Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICET.2011.6048454\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 7th International Conference on Emerging Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICET.2011.6048454","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种基于轨迹估计的非重叠摄像机网络定位算法。定位是指网络的外在定标,即在一个共同的地平面坐标系上恢复网络中各摄像机的相对位置和方向。为此,首先使用卡尔曼滤波对每个摄像机视场中观察到的轨迹进行建模。然后利用这些信息,通过整合相邻摄像机的前向和后向线性回归估计结果,来估计未观测区域中缺失的轨迹信息。然后,通过分析每个相机视场中物体的估计和观察到的出口和入口点,对这些估计的轨迹进行过滤,并用于恢复相机的相对位置和方向。我们固定一个摄像机作为参考,并根据该参考调整其余摄像机来找到网络的最终配置。我们评估了算法在模拟和真实数据上的性能,并将结果与最先进的方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Camera network localization using trajectory estimation
We present an algorithm for non-overlapping camera network localization using trajectory estimation. The localization refers to the extrinsic calibration of a network i.e., the recovery of relative position and orientation of each camera in the network on a common ground plane coordinate system. To this end, Kalman filtering is initially used to model the observed trajectories in each camera's field of view. This information is then used to estimate the missing trajectory information in the unobserved regions by integrating the results of forward and backward linear regression estimation from adjacent cameras. These estimated trajectories are then filtered and used to recover the relative position and orientation of the cameras by analyzing the estimated and observed exit and entry points of an object in each camera's field of view. We fix one camera as a reference and find the final configuration of the network by adjusting the remaining cameras with respect to this reference. We evaluate performance of the algorithm on both simulated and real data and compare the results with state-of-the-art approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信