基于迁移学习的深度卷积神经网络声学场景分类

Min Ye, Hong Zhong, Xiao Song, Shilei Huang, Gang Cheng
{"title":"基于迁移学习的深度卷积神经网络声学场景分类","authors":"Min Ye, Hong Zhong, Xiao Song, Shilei Huang, Gang Cheng","doi":"10.1109/IALP48816.2019.9037692","DOIUrl":null,"url":null,"abstract":"We use deep convolutional neural network via transfer learning for Acoustic Scene Classification (ASC). For this purpose, a powerful and popular deep learning architecture — Residual Neural Network (Resnet) is adopted. Transfer learning is used to fine-tune the pre-trained Resnet model on the TUT Urban Acoustic Scenes 2018 dataset. Furthermore, the focal loss is used to improve overall performance. In order to reduce the chance of overfitting, data augmentation technique is applied based on mixup. Our best system has achieved an improvement of more than 10% in terms of class-wise accuracy with respect to the Detection and classification of acoustic scenes and events (DCASE) 2018 baseline system on the TUT Urban Acoustic Scenes 2018 dataset.","PeriodicalId":208066,"journal":{"name":"2019 International Conference on Asian Language Processing (IALP)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Acoustic Scene Classification Using Deep Convolutional Neural Network via Transfer Learning\",\"authors\":\"Min Ye, Hong Zhong, Xiao Song, Shilei Huang, Gang Cheng\",\"doi\":\"10.1109/IALP48816.2019.9037692\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We use deep convolutional neural network via transfer learning for Acoustic Scene Classification (ASC). For this purpose, a powerful and popular deep learning architecture — Residual Neural Network (Resnet) is adopted. Transfer learning is used to fine-tune the pre-trained Resnet model on the TUT Urban Acoustic Scenes 2018 dataset. Furthermore, the focal loss is used to improve overall performance. In order to reduce the chance of overfitting, data augmentation technique is applied based on mixup. Our best system has achieved an improvement of more than 10% in terms of class-wise accuracy with respect to the Detection and classification of acoustic scenes and events (DCASE) 2018 baseline system on the TUT Urban Acoustic Scenes 2018 dataset.\",\"PeriodicalId\":208066,\"journal\":{\"name\":\"2019 International Conference on Asian Language Processing (IALP)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Asian Language Processing (IALP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IALP48816.2019.9037692\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Asian Language Processing (IALP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IALP48816.2019.9037692","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

将基于迁移学习的深度卷积神经网络用于声学场景分类。为此,采用了一种强大而流行的深度学习架构——残余神经网络(Resnet)。迁移学习用于在TUT城市声学场景2018数据集上微调预训练的Resnet模型。此外,焦损被用来提高整体性能。为了减少过拟合的可能性,采用了基于混合的数据增强技术。在TUT城市声学场景2018数据集上,我们最好的系统在声学场景和事件的检测和分类(DCASE) 2018基线系统方面的分类精度提高了10%以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Acoustic Scene Classification Using Deep Convolutional Neural Network via Transfer Learning
We use deep convolutional neural network via transfer learning for Acoustic Scene Classification (ASC). For this purpose, a powerful and popular deep learning architecture — Residual Neural Network (Resnet) is adopted. Transfer learning is used to fine-tune the pre-trained Resnet model on the TUT Urban Acoustic Scenes 2018 dataset. Furthermore, the focal loss is used to improve overall performance. In order to reduce the chance of overfitting, data augmentation technique is applied based on mixup. Our best system has achieved an improvement of more than 10% in terms of class-wise accuracy with respect to the Detection and classification of acoustic scenes and events (DCASE) 2018 baseline system on the TUT Urban Acoustic Scenes 2018 dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信