周期序列线性复杂度的矩阵代数

Chingwo Ma
{"title":"周期序列线性复杂度的矩阵代数","authors":"Chingwo Ma","doi":"10.1109/ISIC.2012.6449697","DOIUrl":null,"url":null,"abstract":"A matrix algebra is presented for the linear complexity of periodic sequences over finite fields. An algorithm is developed to compute the rank of the circulant matrices and it can be viewed as a matrix formulation of Blackburn's algorithm. The rank-nullity property is shown precisely between the pseudocirculant matrices and the Hasse matrices.","PeriodicalId":393653,"journal":{"name":"2012 International Conference on Information Security and Intelligent Control","volume":"120 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A matrix algebra for the linear complexity of periodic sequences\",\"authors\":\"Chingwo Ma\",\"doi\":\"10.1109/ISIC.2012.6449697\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A matrix algebra is presented for the linear complexity of periodic sequences over finite fields. An algorithm is developed to compute the rank of the circulant matrices and it can be viewed as a matrix formulation of Blackburn's algorithm. The rank-nullity property is shown precisely between the pseudocirculant matrices and the Hasse matrices.\",\"PeriodicalId\":393653,\"journal\":{\"name\":\"2012 International Conference on Information Security and Intelligent Control\",\"volume\":\"120 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 International Conference on Information Security and Intelligent Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIC.2012.6449697\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference on Information Security and Intelligent Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIC.2012.6449697","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

给出了有限域上周期序列线性复杂度的矩阵代数。提出了一种计算循环矩阵秩的算法,可以看作是布莱克本算法的矩阵形式。精确地证明了伪循环矩阵与哈塞矩阵之间的秩空性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A matrix algebra for the linear complexity of periodic sequences
A matrix algebra is presented for the linear complexity of periodic sequences over finite fields. An algorithm is developed to compute the rank of the circulant matrices and it can be viewed as a matrix formulation of Blackburn's algorithm. The rank-nullity property is shown precisely between the pseudocirculant matrices and the Hasse matrices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信