基于粗糙集的约简在网络数据集中的应用

V. R. Saraswathy, M. Prabhu Ram, A. Vennila, S. G. Dravid
{"title":"基于粗糙集的约简在网络数据集中的应用","authors":"V. R. Saraswathy, M. Prabhu Ram, A. Vennila, S. G. Dravid","doi":"10.1109/I2C2SW45816.2018.8997516","DOIUrl":null,"url":null,"abstract":"The modern technologies in all the fields constantly generate a large amount of data. The data if it is represented in an understandable form will influence the real world in all respects. The tremendous increase in the data size makes the analysis of the data more tedious. Hence the retrieval of useful information using systems with human approach is essential in today’s scenario. Hence feature reduction using Quick reduct , an application of Rough set theory is used to reduce feature set size and identify the useful features based on semi-supervised learning. Particle swarm optimization is used for Quick reduct feature reduction process. The algorithm is applied for network data set.","PeriodicalId":212347,"journal":{"name":"2018 International Conference on Intelligent Computing and Communication for Smart World (I2C2SW)","volume":"253 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of Rough Set Based Reduction for Network data set\",\"authors\":\"V. R. Saraswathy, M. Prabhu Ram, A. Vennila, S. G. Dravid\",\"doi\":\"10.1109/I2C2SW45816.2018.8997516\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The modern technologies in all the fields constantly generate a large amount of data. The data if it is represented in an understandable form will influence the real world in all respects. The tremendous increase in the data size makes the analysis of the data more tedious. Hence the retrieval of useful information using systems with human approach is essential in today’s scenario. Hence feature reduction using Quick reduct , an application of Rough set theory is used to reduce feature set size and identify the useful features based on semi-supervised learning. Particle swarm optimization is used for Quick reduct feature reduction process. The algorithm is applied for network data set.\",\"PeriodicalId\":212347,\"journal\":{\"name\":\"2018 International Conference on Intelligent Computing and Communication for Smart World (I2C2SW)\",\"volume\":\"253 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Conference on Intelligent Computing and Communication for Smart World (I2C2SW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/I2C2SW45816.2018.8997516\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Intelligent Computing and Communication for Smart World (I2C2SW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/I2C2SW45816.2018.8997516","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

各个领域的现代技术不断产生大量的数据。如果数据以一种可理解的形式表示,它将在各个方面影响现实世界。数据量的巨大增长使得数据分析变得更加繁琐。因此,在今天的场景中,使用具有人类方法的系统检索有用的信息是必不可少的。因此,采用快速约简方法进行特征约简,利用粗糙集理论来减少特征集的大小,并基于半监督学习识别有用的特征。粒子群算法用于快速约简特征约简过程。该算法应用于网络数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of Rough Set Based Reduction for Network data set
The modern technologies in all the fields constantly generate a large amount of data. The data if it is represented in an understandable form will influence the real world in all respects. The tremendous increase in the data size makes the analysis of the data more tedious. Hence the retrieval of useful information using systems with human approach is essential in today’s scenario. Hence feature reduction using Quick reduct , an application of Rough set theory is used to reduce feature set size and identify the useful features based on semi-supervised learning. Particle swarm optimization is used for Quick reduct feature reduction process. The algorithm is applied for network data set.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信