拟凹单调归一化泛函的二阶Frechet微分

Y. Shirai
{"title":"拟凹单调归一化泛函的二阶Frechet微分","authors":"Y. Shirai","doi":"10.2139/ssrn.2361563","DOIUrl":null,"url":null,"abstract":"The theory of mean-variance based portfolio selection is a cornerstone of modern asset management. It rests on the assumption that rational investors choose among risky assets purely on the basis of expected return and risk, with risk measured as variance. The aim of this paper is to provide a foundation to such assumption in a general context of decision under uncertainty.","PeriodicalId":129812,"journal":{"name":"Financial Engineering eJournal","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Second Order Frechet Differential of Quasiconcave Monotone Normalized Functionals\",\"authors\":\"Y. Shirai\",\"doi\":\"10.2139/ssrn.2361563\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The theory of mean-variance based portfolio selection is a cornerstone of modern asset management. It rests on the assumption that rational investors choose among risky assets purely on the basis of expected return and risk, with risk measured as variance. The aim of this paper is to provide a foundation to such assumption in a general context of decision under uncertainty.\",\"PeriodicalId\":129812,\"journal\":{\"name\":\"Financial Engineering eJournal\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Financial Engineering eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.2361563\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Financial Engineering eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2361563","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于均值方差的投资组合理论是现代资产管理的基石。它基于这样一个假设:理性投资者在风险资产中进行选择,完全是基于预期收益和风险,风险以方差来衡量。本文的目的是在不确定决策的一般背景下为这种假设提供基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Second Order Frechet Differential of Quasiconcave Monotone Normalized Functionals
The theory of mean-variance based portfolio selection is a cornerstone of modern asset management. It rests on the assumption that rational investors choose among risky assets purely on the basis of expected return and risk, with risk measured as variance. The aim of this paper is to provide a foundation to such assumption in a general context of decision under uncertainty.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信