电力批发市场ARFIMA模型的预测效率

Y. Balagula
{"title":"电力批发市场ARFIMA模型的预测效率","authors":"Y. Balagula","doi":"10.52897/978-5-7310-5861-2-2022-16-1-4-9","DOIUrl":null,"url":null,"abstract":"The comparative predictive efficiency of the ARFIMA model for time series of hourly wholesale electricity prices in the markets of a number of countries and regions is investigated. Various aspects of the model are analyzed. It is shown that taking into account long memory in the model increases the accuracy of the forecast.","PeriodicalId":436799,"journal":{"name":"Collection of scientific articles","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predictive efficiency of the ARFIMA model for wholesale electricity markets\",\"authors\":\"Y. Balagula\",\"doi\":\"10.52897/978-5-7310-5861-2-2022-16-1-4-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The comparative predictive efficiency of the ARFIMA model for time series of hourly wholesale electricity prices in the markets of a number of countries and regions is investigated. Various aspects of the model are analyzed. It is shown that taking into account long memory in the model increases the accuracy of the forecast.\",\"PeriodicalId\":436799,\"journal\":{\"name\":\"Collection of scientific articles\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Collection of scientific articles\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.52897/978-5-7310-5861-2-2022-16-1-4-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Collection of scientific articles","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52897/978-5-7310-5861-2-2022-16-1-4-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了ARFIMA模型对多个国家和地区市场小时批发电价时间序列的比较预测效率。分析了该模型的各个方面。结果表明,在模型中考虑长记忆可以提高预测的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predictive efficiency of the ARFIMA model for wholesale electricity markets
The comparative predictive efficiency of the ARFIMA model for time series of hourly wholesale electricity prices in the markets of a number of countries and regions is investigated. Various aspects of the model are analyzed. It is shown that taking into account long memory in the model increases the accuracy of the forecast.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信