从树木图像中分割椰子作物束

S. Siddesha, S. Niranjan, V. N. Manjunath Aradhya
{"title":"从树木图像中分割椰子作物束","authors":"S. Siddesha, S. Niranjan, V. N. Manjunath Aradhya","doi":"10.1109/CCIP.2016.7802865","DOIUrl":null,"url":null,"abstract":"Harvesting is one of the very crucial stages in crop management. Harvesting the crop at proper time will enhance the quality. In this paper we segmented the coconut crop bunch from tree image. Different segmentation methods like, Color based K-Means clustering, Marker controlled watershed, Grow-cut and Maximum Similarity based Region Merging (MSRM) are explored. Experimentation conducted using a dataset of 200 images for demonstration. Out of these methods the MSRM provides good result.","PeriodicalId":354589,"journal":{"name":"2016 Second International Conference on Cognitive Computing and Information Processing (CCIP)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Segmentation of coconut crop bunch from tree images\",\"authors\":\"S. Siddesha, S. Niranjan, V. N. Manjunath Aradhya\",\"doi\":\"10.1109/CCIP.2016.7802865\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Harvesting is one of the very crucial stages in crop management. Harvesting the crop at proper time will enhance the quality. In this paper we segmented the coconut crop bunch from tree image. Different segmentation methods like, Color based K-Means clustering, Marker controlled watershed, Grow-cut and Maximum Similarity based Region Merging (MSRM) are explored. Experimentation conducted using a dataset of 200 images for demonstration. Out of these methods the MSRM provides good result.\",\"PeriodicalId\":354589,\"journal\":{\"name\":\"2016 Second International Conference on Cognitive Computing and Information Processing (CCIP)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 Second International Conference on Cognitive Computing and Information Processing (CCIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCIP.2016.7802865\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Second International Conference on Cognitive Computing and Information Processing (CCIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCIP.2016.7802865","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

收获是作物管理中非常关键的阶段之一。在适当的时候收割庄稼可以提高质量。本文从树状图像中对椰子作物束进行了分割。探索了基于颜色的K-Means聚类、标记控制分水岭、生长切割和基于最大相似度的区域合并(MSRM)等不同的分割方法。实验使用200张图像的数据集进行演示。在这些方法中,MSRM提供了良好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Segmentation of coconut crop bunch from tree images
Harvesting is one of the very crucial stages in crop management. Harvesting the crop at proper time will enhance the quality. In this paper we segmented the coconut crop bunch from tree image. Different segmentation methods like, Color based K-Means clustering, Marker controlled watershed, Grow-cut and Maximum Similarity based Region Merging (MSRM) are explored. Experimentation conducted using a dataset of 200 images for demonstration. Out of these methods the MSRM provides good result.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信