Nan Gu, Bin Zhang, Shuai Ren, Dan Wang, Zhouhua Peng
{"title":"有向图下全驱动自主水面车辆分布式围防机动的饱和制导律","authors":"Nan Gu, Bin Zhang, Shuai Ren, Dan Wang, Zhouhua Peng","doi":"10.1109/YAC.2018.8406430","DOIUrl":null,"url":null,"abstract":"This paper considers the guidance law design for distributed containment maneuvering of a group of fully-actuated autonomous surface vehicles subject to velocity constraints under a directed graph. A saturated guidance law is designed for each vehicle based on a constant bearing guidance method and a containment maneuvering approach. By using the presented saturated guidance law, the fully-actuated marine surface vehicles are able to track a convex hull spanned by multiple virtual leaders moving along multiple parameterized paths. A key feature of the proposed saturated guidance law is that velocity constraints are not violated and aggressive maneuvers during transient phase can be avoided. On the basis of Lyapunov theory and graph theory, the globally uniformly asymptotically stable and locally uniformly exponentially stable of the closed-loop system is analyzed. Finally, the effectiveness of the proposed saturated guidance law is illustrated by the simulation study.","PeriodicalId":226586,"journal":{"name":"2018 33rd Youth Academic Annual Conference of Chinese Association of Automation (YAC)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Saturated guidance law for distributed containment maneuvering of fully-actuated autonomous surface vehicles under a directed graph\",\"authors\":\"Nan Gu, Bin Zhang, Shuai Ren, Dan Wang, Zhouhua Peng\",\"doi\":\"10.1109/YAC.2018.8406430\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper considers the guidance law design for distributed containment maneuvering of a group of fully-actuated autonomous surface vehicles subject to velocity constraints under a directed graph. A saturated guidance law is designed for each vehicle based on a constant bearing guidance method and a containment maneuvering approach. By using the presented saturated guidance law, the fully-actuated marine surface vehicles are able to track a convex hull spanned by multiple virtual leaders moving along multiple parameterized paths. A key feature of the proposed saturated guidance law is that velocity constraints are not violated and aggressive maneuvers during transient phase can be avoided. On the basis of Lyapunov theory and graph theory, the globally uniformly asymptotically stable and locally uniformly exponentially stable of the closed-loop system is analyzed. Finally, the effectiveness of the proposed saturated guidance law is illustrated by the simulation study.\",\"PeriodicalId\":226586,\"journal\":{\"name\":\"2018 33rd Youth Academic Annual Conference of Chinese Association of Automation (YAC)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 33rd Youth Academic Annual Conference of Chinese Association of Automation (YAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/YAC.2018.8406430\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 33rd Youth Academic Annual Conference of Chinese Association of Automation (YAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/YAC.2018.8406430","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Saturated guidance law for distributed containment maneuvering of fully-actuated autonomous surface vehicles under a directed graph
This paper considers the guidance law design for distributed containment maneuvering of a group of fully-actuated autonomous surface vehicles subject to velocity constraints under a directed graph. A saturated guidance law is designed for each vehicle based on a constant bearing guidance method and a containment maneuvering approach. By using the presented saturated guidance law, the fully-actuated marine surface vehicles are able to track a convex hull spanned by multiple virtual leaders moving along multiple parameterized paths. A key feature of the proposed saturated guidance law is that velocity constraints are not violated and aggressive maneuvers during transient phase can be avoided. On the basis of Lyapunov theory and graph theory, the globally uniformly asymptotically stable and locally uniformly exponentially stable of the closed-loop system is analyzed. Finally, the effectiveness of the proposed saturated guidance law is illustrated by the simulation study.