通过挖掘关联规则为重构自动排序克隆

Manishankar Mondal, C. Roy, Kevin A. Schneider
{"title":"通过挖掘关联规则为重构自动排序克隆","authors":"Manishankar Mondal, C. Roy, Kevin A. Schneider","doi":"10.1109/CSMR-WCRE.2014.6747161","DOIUrl":null,"url":null,"abstract":"In this paper, we present an in-depth empirical study on identifying clone fragments that can be important refactoring candidates. We mine association rules among clones in order to detect clone fragments that belong to the same clone class and have a tendency of changing together during software evolution. The idea is that if two or more clone fragments from the same class often change together (i.e., are likely to co-change) preserving their similarity, they might be important candidates for refactoring. Merging such clones into one (if possible) can potentially decrease future clone maintenance effort. We define a particular clone change pattern, the Similarity Preserving Change Pattern (SPCP), and consider the cloned fragments that changed according to this pattern (i.e., the SPCP clones) as important candidates for refactoring. For the purpose of our study, we implement a prototype tool called MARC that identifies SPCP clones and mines association rules among these. The rules as well as the SPCP clones are ranked for refactoring on the basis of their change-proneness. We applied MARC on thirteen subject systems and retrieved the refactoring candidates for three types of clones (Type 1, Type 2, and Type 3) separately. Our experimental results show that SPCP clones can be considered important candidates for refactoring. Clones that do not follow SPCP either evolve independently or are rarely changed. By considering SPCP clones for refactoring we not only can minimize refactoring effort considerably but also can reduce the possibility of delayed synchronizations among clones and thus, can minimize inconsistencies in software systems.","PeriodicalId":166271,"journal":{"name":"2014 Software Evolution Week - IEEE Conference on Software Maintenance, Reengineering, and Reverse Engineering (CSMR-WCRE)","volume":"82 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"46","resultStr":"{\"title\":\"Automatic ranking of clones for refactoring through mining association rules\",\"authors\":\"Manishankar Mondal, C. Roy, Kevin A. Schneider\",\"doi\":\"10.1109/CSMR-WCRE.2014.6747161\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present an in-depth empirical study on identifying clone fragments that can be important refactoring candidates. We mine association rules among clones in order to detect clone fragments that belong to the same clone class and have a tendency of changing together during software evolution. The idea is that if two or more clone fragments from the same class often change together (i.e., are likely to co-change) preserving their similarity, they might be important candidates for refactoring. Merging such clones into one (if possible) can potentially decrease future clone maintenance effort. We define a particular clone change pattern, the Similarity Preserving Change Pattern (SPCP), and consider the cloned fragments that changed according to this pattern (i.e., the SPCP clones) as important candidates for refactoring. For the purpose of our study, we implement a prototype tool called MARC that identifies SPCP clones and mines association rules among these. The rules as well as the SPCP clones are ranked for refactoring on the basis of their change-proneness. We applied MARC on thirteen subject systems and retrieved the refactoring candidates for three types of clones (Type 1, Type 2, and Type 3) separately. Our experimental results show that SPCP clones can be considered important candidates for refactoring. Clones that do not follow SPCP either evolve independently or are rarely changed. By considering SPCP clones for refactoring we not only can minimize refactoring effort considerably but also can reduce the possibility of delayed synchronizations among clones and thus, can minimize inconsistencies in software systems.\",\"PeriodicalId\":166271,\"journal\":{\"name\":\"2014 Software Evolution Week - IEEE Conference on Software Maintenance, Reengineering, and Reverse Engineering (CSMR-WCRE)\",\"volume\":\"82 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"46\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 Software Evolution Week - IEEE Conference on Software Maintenance, Reengineering, and Reverse Engineering (CSMR-WCRE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSMR-WCRE.2014.6747161\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 Software Evolution Week - IEEE Conference on Software Maintenance, Reengineering, and Reverse Engineering (CSMR-WCRE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSMR-WCRE.2014.6747161","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 46

摘要

在本文中,我们提出了一个深入的实证研究,以确定克隆片段,可以是重要的重构候选人。我们挖掘克隆间的关联规则,以发现在软件进化过程中属于同一克隆类且有共同变化趋势的克隆片段。其思想是,如果来自同一类的两个或多个克隆片段经常一起更改(即可能共同更改),则保持它们的相似性,它们可能是重构的重要候选者。将这些克隆合并为一个(如果可能的话)可以潜在地减少将来的克隆维护工作。我们定义了一个特定的克隆更改模式,即相似性保持更改模式(SPCP),并将根据该模式更改的克隆片段(即SPCP克隆)视为重构的重要候选者。为了我们研究的目的,我们实现了一个称为MARC的原型工具,它可以识别SPCP克隆并在这些克隆中挖掘关联规则。规则和SPCP克隆根据它们的易变性对重构进行排序。我们在13个主题系统上应用MARC,并分别检索了三种类型的克隆(类型1、类型2和类型3)的重构候选对象。我们的实验结果表明,SPCP克隆可以被认为是重构的重要候选者。不遵循SPCP的克隆要么独立进化,要么很少改变。通过考虑用于重构的SPCP克隆,我们不仅可以大大减少重构工作量,还可以减少克隆之间延迟同步的可能性,从而可以最大限度地减少软件系统中的不一致性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic ranking of clones for refactoring through mining association rules
In this paper, we present an in-depth empirical study on identifying clone fragments that can be important refactoring candidates. We mine association rules among clones in order to detect clone fragments that belong to the same clone class and have a tendency of changing together during software evolution. The idea is that if two or more clone fragments from the same class often change together (i.e., are likely to co-change) preserving their similarity, they might be important candidates for refactoring. Merging such clones into one (if possible) can potentially decrease future clone maintenance effort. We define a particular clone change pattern, the Similarity Preserving Change Pattern (SPCP), and consider the cloned fragments that changed according to this pattern (i.e., the SPCP clones) as important candidates for refactoring. For the purpose of our study, we implement a prototype tool called MARC that identifies SPCP clones and mines association rules among these. The rules as well as the SPCP clones are ranked for refactoring on the basis of their change-proneness. We applied MARC on thirteen subject systems and retrieved the refactoring candidates for three types of clones (Type 1, Type 2, and Type 3) separately. Our experimental results show that SPCP clones can be considered important candidates for refactoring. Clones that do not follow SPCP either evolve independently or are rarely changed. By considering SPCP clones for refactoring we not only can minimize refactoring effort considerably but also can reduce the possibility of delayed synchronizations among clones and thus, can minimize inconsistencies in software systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信