使用粒子滤波和主动外观模型的面部动作跟踪

S. Hamlaoui, F. Davoine
{"title":"使用粒子滤波和主动外观模型的面部动作跟踪","authors":"S. Hamlaoui, F. Davoine","doi":"10.1145/1107548.1107592","DOIUrl":null,"url":null,"abstract":"Tracking a face and its facial features in a video sequence is a challenging problem in computer vision. In this view, we propose a stochastic tracking system based on a particle- filtering scheme. In this paradigm, the unobserved state includes global face pose and appearance parameters coding both shape and texture information of the face. The adopted observations distribution is derived from an Active Appearance Model (AAM). The transition distribution and the particles number are adaptive in the sense that they are guided by an AAM deterministic search. This optimization stage adjusts the explored area of the state space to the quality of the prediction and enables a substantial gain in computing time. The observation model uses a robust distance measure in order to account for occlusions. Experiments on real video show encouraging results.","PeriodicalId":391548,"journal":{"name":"sOc-EUSAI '05","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Facial action tracking using particle filters and active appearance models\",\"authors\":\"S. Hamlaoui, F. Davoine\",\"doi\":\"10.1145/1107548.1107592\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tracking a face and its facial features in a video sequence is a challenging problem in computer vision. In this view, we propose a stochastic tracking system based on a particle- filtering scheme. In this paradigm, the unobserved state includes global face pose and appearance parameters coding both shape and texture information of the face. The adopted observations distribution is derived from an Active Appearance Model (AAM). The transition distribution and the particles number are adaptive in the sense that they are guided by an AAM deterministic search. This optimization stage adjusts the explored area of the state space to the quality of the prediction and enables a substantial gain in computing time. The observation model uses a robust distance measure in order to account for occlusions. Experiments on real video show encouraging results.\",\"PeriodicalId\":391548,\"journal\":{\"name\":\"sOc-EUSAI '05\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"sOc-EUSAI '05\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1107548.1107592\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"sOc-EUSAI '05","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1107548.1107592","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

在视频序列中跟踪人脸及其面部特征是计算机视觉中的一个具有挑战性的问题。在此基础上,我们提出了一种基于粒子滤波的随机跟踪系统。在该范式中,未观察状态包括编码人脸形状和纹理信息的全局人脸姿态和外观参数。所采用的观测分布是由一个活动外观模型(AAM)推导出来的。跃迁分布和粒子数是自适应的,因为它们是由AAM确定性搜索引导的。这个优化阶段根据预测的质量调整状态空间的探索区域,并使计算时间大大增加。观测模型使用鲁棒距离测量来考虑遮挡。在真实视频上的实验显示了令人鼓舞的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Facial action tracking using particle filters and active appearance models
Tracking a face and its facial features in a video sequence is a challenging problem in computer vision. In this view, we propose a stochastic tracking system based on a particle- filtering scheme. In this paradigm, the unobserved state includes global face pose and appearance parameters coding both shape and texture information of the face. The adopted observations distribution is derived from an Active Appearance Model (AAM). The transition distribution and the particles number are adaptive in the sense that they are guided by an AAM deterministic search. This optimization stage adjusts the explored area of the state space to the quality of the prediction and enables a substantial gain in computing time. The observation model uses a robust distance measure in order to account for occlusions. Experiments on real video show encouraging results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信