基于残差高斯-马尔科夫随机场的云遥测建模

Nicholas C. Landolfi, Daniel C. O’Neill, S. Lall
{"title":"基于残差高斯-马尔科夫随机场的云遥测建模","authors":"Nicholas C. Landolfi, Daniel C. O’Neill, S. Lall","doi":"10.1109/ICIN51074.2021.9385544","DOIUrl":null,"url":null,"abstract":"Can probabilistic graphical models characterize cloud telemetry? This paper promotes the affirmative view. Cloud systems are large, connected, and dynamic. Consequently, databased techniques to model their telemetry are high-dimensional, spatial, and unsupervised. Undirected probabilistic graphical models seem natural, but remain unexplored. We discuss one way around the limitation that cloud measurements violate usual assumptions of normality, and give a tractable estimation procedure for a candidate data model. As a preliminary test, we fit the model and use it to detect and localize anomalies in a synthetic environment and for a small-scale software system.","PeriodicalId":347933,"journal":{"name":"2021 24th Conference on Innovation in Clouds, Internet and Networks and Workshops (ICIN)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Cloud Telemetry Modeling via Residual Gauss-Markov Random Fields\",\"authors\":\"Nicholas C. Landolfi, Daniel C. O’Neill, S. Lall\",\"doi\":\"10.1109/ICIN51074.2021.9385544\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Can probabilistic graphical models characterize cloud telemetry? This paper promotes the affirmative view. Cloud systems are large, connected, and dynamic. Consequently, databased techniques to model their telemetry are high-dimensional, spatial, and unsupervised. Undirected probabilistic graphical models seem natural, but remain unexplored. We discuss one way around the limitation that cloud measurements violate usual assumptions of normality, and give a tractable estimation procedure for a candidate data model. As a preliminary test, we fit the model and use it to detect and localize anomalies in a synthetic environment and for a small-scale software system.\",\"PeriodicalId\":347933,\"journal\":{\"name\":\"2021 24th Conference on Innovation in Clouds, Internet and Networks and Workshops (ICIN)\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 24th Conference on Innovation in Clouds, Internet and Networks and Workshops (ICIN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIN51074.2021.9385544\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 24th Conference on Innovation in Clouds, Internet and Networks and Workshops (ICIN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIN51074.2021.9385544","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

概率图形模型能描述云遥测的特征吗?本文提出了肯定的观点。云系统是大型的、互联的和动态的。因此,基于数据库的遥测建模技术是高维的、空间的和无监督的。无向概率图形模型似乎很自然,但仍未被探索。我们讨论了一种绕过云测量违反通常正态性假设的限制的方法,并给出了一个可处理的候选数据模型估计过程。作为初步测试,我们拟合了该模型,并将其用于检测和定位合成环境和小型软件系统中的异常。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cloud Telemetry Modeling via Residual Gauss-Markov Random Fields
Can probabilistic graphical models characterize cloud telemetry? This paper promotes the affirmative view. Cloud systems are large, connected, and dynamic. Consequently, databased techniques to model their telemetry are high-dimensional, spatial, and unsupervised. Undirected probabilistic graphical models seem natural, but remain unexplored. We discuss one way around the limitation that cloud measurements violate usual assumptions of normality, and give a tractable estimation procedure for a candidate data model. As a preliminary test, we fit the model and use it to detect and localize anomalies in a synthetic environment and for a small-scale software system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信