基于高阶统计量的反滤波器对语音信号的反卷积和声道参数估计

Wu-Ton Chen, Chong-Yung Chi
{"title":"基于高阶统计量的反滤波器对语音信号的反卷积和声道参数估计","authors":"Wu-Ton Chen, Chong-Yung Chi","doi":"10.1109/HOST.1993.264598","DOIUrl":null,"url":null,"abstract":"The authors propose a two-step method for deconvolution and vocal-tract parameter estimation of (non-Gaussian) voiced speech signals. In the first step, the driving input (a non-Gaussian pseudo-periodic positive pulse train) to the vocal-tract filter which can be nonminimum-phase is estimated from speech data by a higher-order statistics (HOS) based inverse filter. In the second step, autoregressive moving average (ARMA) parameters of the vocal-tract filter are estimated with the estimated input and speech data by a prediction error system identification method (an input-output system identification method). Finally, some experimental results with real speech data are provided.<<ETX>>","PeriodicalId":439030,"journal":{"name":"[1993 Proceedings] IEEE Signal Processing Workshop on Higher-Order Statistics","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Deconvolution and vocal-tract parameter estimation of speech signals by higher-order statistics based inverse filters\",\"authors\":\"Wu-Ton Chen, Chong-Yung Chi\",\"doi\":\"10.1109/HOST.1993.264598\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The authors propose a two-step method for deconvolution and vocal-tract parameter estimation of (non-Gaussian) voiced speech signals. In the first step, the driving input (a non-Gaussian pseudo-periodic positive pulse train) to the vocal-tract filter which can be nonminimum-phase is estimated from speech data by a higher-order statistics (HOS) based inverse filter. In the second step, autoregressive moving average (ARMA) parameters of the vocal-tract filter are estimated with the estimated input and speech data by a prediction error system identification method (an input-output system identification method). Finally, some experimental results with real speech data are provided.<<ETX>>\",\"PeriodicalId\":439030,\"journal\":{\"name\":\"[1993 Proceedings] IEEE Signal Processing Workshop on Higher-Order Statistics\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[1993 Proceedings] IEEE Signal Processing Workshop on Higher-Order Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HOST.1993.264598\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1993 Proceedings] IEEE Signal Processing Workshop on Higher-Order Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HOST.1993.264598","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

提出了一种两步法对(非高斯)浊音信号进行反卷积和声道参数估计。首先,利用基于高阶统计量(HOS)的反滤波器从语音数据中估计出非最小相位的声道滤波器的驱动输入(非高斯伪周期正脉冲序列);第二步,利用估计的输入和语音数据,采用预测误差系统识别方法(输入-输出系统识别方法)估计声道滤波器的自回归移动平均(ARMA)参数。最后给出了一些真实语音数据的实验结果
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deconvolution and vocal-tract parameter estimation of speech signals by higher-order statistics based inverse filters
The authors propose a two-step method for deconvolution and vocal-tract parameter estimation of (non-Gaussian) voiced speech signals. In the first step, the driving input (a non-Gaussian pseudo-periodic positive pulse train) to the vocal-tract filter which can be nonminimum-phase is estimated from speech data by a higher-order statistics (HOS) based inverse filter. In the second step, autoregressive moving average (ARMA) parameters of the vocal-tract filter are estimated with the estimated input and speech data by a prediction error system identification method (an input-output system identification method). Finally, some experimental results with real speech data are provided.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信