{"title":"洛伦兹不变二阶张量与不可约矩阵集","authors":"M. Arminjon","doi":"10.7546/jgsp-50-2018-1-10","DOIUrl":null,"url":null,"abstract":"We prove that, up to multiplication by a scalar, the Minkowski metric tensor is the only second-order tensor that is Lorentz-invariant. To prove this, we show that a specific set of three $4\\times 4$ matrices, made of two rotation matrices plus a Lorentz boost, is irreducible.","PeriodicalId":369778,"journal":{"name":"arXiv: General Physics","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Lorentz-Invariant Second-Order Tensors and an Irreducible Set of Matrices\",\"authors\":\"M. Arminjon\",\"doi\":\"10.7546/jgsp-50-2018-1-10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that, up to multiplication by a scalar, the Minkowski metric tensor is the only second-order tensor that is Lorentz-invariant. To prove this, we show that a specific set of three $4\\\\times 4$ matrices, made of two rotation matrices plus a Lorentz boost, is irreducible.\",\"PeriodicalId\":369778,\"journal\":{\"name\":\"arXiv: General Physics\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: General Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7546/jgsp-50-2018-1-10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: General Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7546/jgsp-50-2018-1-10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Lorentz-Invariant Second-Order Tensors and an Irreducible Set of Matrices
We prove that, up to multiplication by a scalar, the Minkowski metric tensor is the only second-order tensor that is Lorentz-invariant. To prove this, we show that a specific set of three $4\times 4$ matrices, made of two rotation matrices plus a Lorentz boost, is irreducible.