通过在多维椭球体上的投影从高维噪声数据中学习

Liuling Gong, D. Schonfeld
{"title":"通过在多维椭球体上的投影从高维噪声数据中学习","authors":"Liuling Gong, D. Schonfeld","doi":"10.1109/ICASSP.2010.5495284","DOIUrl":null,"url":null,"abstract":"In this paper, we examine the problem of learning from noise-contaminated data in high-dimensional space. A new learning approach based on projections onto multi-dimensional ellipsoids (POME) is introduced, which is applicable to unsupervised clustering, semi-supervised clustering and classification in high-dimensional noisy data. Unlike the traditional learning techniques, where local information is used for data analysis, the proposed POME-based scheme incorporates a priori information of the data distribution. Experimental results in unsupervised clustering demonstrate the superiority of the proposed POME-based scheme to some well-known clustering algorithms, including the k-means and the hierarchical agglomerative clustering. We also illustrate the effectiveness of our proposed POME-based scheme in semi-supervised learning by simulation.","PeriodicalId":293333,"journal":{"name":"2010 IEEE International Conference on Acoustics, Speech and Signal Processing","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learning from high-dimensional noisy data via projections onto multi-dimensional ellipsoids\",\"authors\":\"Liuling Gong, D. Schonfeld\",\"doi\":\"10.1109/ICASSP.2010.5495284\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we examine the problem of learning from noise-contaminated data in high-dimensional space. A new learning approach based on projections onto multi-dimensional ellipsoids (POME) is introduced, which is applicable to unsupervised clustering, semi-supervised clustering and classification in high-dimensional noisy data. Unlike the traditional learning techniques, where local information is used for data analysis, the proposed POME-based scheme incorporates a priori information of the data distribution. Experimental results in unsupervised clustering demonstrate the superiority of the proposed POME-based scheme to some well-known clustering algorithms, including the k-means and the hierarchical agglomerative clustering. We also illustrate the effectiveness of our proposed POME-based scheme in semi-supervised learning by simulation.\",\"PeriodicalId\":293333,\"journal\":{\"name\":\"2010 IEEE International Conference on Acoustics, Speech and Signal Processing\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Conference on Acoustics, Speech and Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2010.5495284\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Acoustics, Speech and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2010.5495284","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们研究了在高维空间中从噪声污染数据中学习的问题。提出了一种新的基于多维椭球投影的学习方法,该方法适用于高维噪声数据的无监督聚类、半监督聚类和分类。与传统学习技术使用局部信息进行数据分析不同,本文提出的基于pome的方案包含了数据分布的先验信息。无监督聚类的实验结果表明,该方法优于k-means和分层聚类算法。我们还通过仿真证明了我们提出的基于pme的方案在半监督学习中的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning from high-dimensional noisy data via projections onto multi-dimensional ellipsoids
In this paper, we examine the problem of learning from noise-contaminated data in high-dimensional space. A new learning approach based on projections onto multi-dimensional ellipsoids (POME) is introduced, which is applicable to unsupervised clustering, semi-supervised clustering and classification in high-dimensional noisy data. Unlike the traditional learning techniques, where local information is used for data analysis, the proposed POME-based scheme incorporates a priori information of the data distribution. Experimental results in unsupervised clustering demonstrate the superiority of the proposed POME-based scheme to some well-known clustering algorithms, including the k-means and the hierarchical agglomerative clustering. We also illustrate the effectiveness of our proposed POME-based scheme in semi-supervised learning by simulation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信