{"title":"通过在多维椭球体上的投影从高维噪声数据中学习","authors":"Liuling Gong, D. Schonfeld","doi":"10.1109/ICASSP.2010.5495284","DOIUrl":null,"url":null,"abstract":"In this paper, we examine the problem of learning from noise-contaminated data in high-dimensional space. A new learning approach based on projections onto multi-dimensional ellipsoids (POME) is introduced, which is applicable to unsupervised clustering, semi-supervised clustering and classification in high-dimensional noisy data. Unlike the traditional learning techniques, where local information is used for data analysis, the proposed POME-based scheme incorporates a priori information of the data distribution. Experimental results in unsupervised clustering demonstrate the superiority of the proposed POME-based scheme to some well-known clustering algorithms, including the k-means and the hierarchical agglomerative clustering. We also illustrate the effectiveness of our proposed POME-based scheme in semi-supervised learning by simulation.","PeriodicalId":293333,"journal":{"name":"2010 IEEE International Conference on Acoustics, Speech and Signal Processing","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learning from high-dimensional noisy data via projections onto multi-dimensional ellipsoids\",\"authors\":\"Liuling Gong, D. Schonfeld\",\"doi\":\"10.1109/ICASSP.2010.5495284\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we examine the problem of learning from noise-contaminated data in high-dimensional space. A new learning approach based on projections onto multi-dimensional ellipsoids (POME) is introduced, which is applicable to unsupervised clustering, semi-supervised clustering and classification in high-dimensional noisy data. Unlike the traditional learning techniques, where local information is used for data analysis, the proposed POME-based scheme incorporates a priori information of the data distribution. Experimental results in unsupervised clustering demonstrate the superiority of the proposed POME-based scheme to some well-known clustering algorithms, including the k-means and the hierarchical agglomerative clustering. We also illustrate the effectiveness of our proposed POME-based scheme in semi-supervised learning by simulation.\",\"PeriodicalId\":293333,\"journal\":{\"name\":\"2010 IEEE International Conference on Acoustics, Speech and Signal Processing\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Conference on Acoustics, Speech and Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2010.5495284\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Acoustics, Speech and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2010.5495284","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Learning from high-dimensional noisy data via projections onto multi-dimensional ellipsoids
In this paper, we examine the problem of learning from noise-contaminated data in high-dimensional space. A new learning approach based on projections onto multi-dimensional ellipsoids (POME) is introduced, which is applicable to unsupervised clustering, semi-supervised clustering and classification in high-dimensional noisy data. Unlike the traditional learning techniques, where local information is used for data analysis, the proposed POME-based scheme incorporates a priori information of the data distribution. Experimental results in unsupervised clustering demonstrate the superiority of the proposed POME-based scheme to some well-known clustering algorithms, including the k-means and the hierarchical agglomerative clustering. We also illustrate the effectiveness of our proposed POME-based scheme in semi-supervised learning by simulation.