GraphScale: fpga上可扩展的带宽高效图形处理

Jonas Dann, Daniel Ritter, H. Fröning
{"title":"GraphScale: fpga上可扩展的带宽高效图形处理","authors":"Jonas Dann, Daniel Ritter, H. Fröning","doi":"10.1109/FPL57034.2022.00016","DOIUrl":null,"url":null,"abstract":"Recent advances in graph processing on FPGAs promise to alleviate performance bottlenecks with irregular memory access patterns. Such bottlenecks challenge performance for a growing number of important application areas like machine learning and data analytics. While FPGAs denote a promising solution through flexible memory hierarchies and massive parallelism, we argue that current graph processing accelerators either use the off-chip memory bandwidth inefficiently or do not scale well across memory channels. In this work, we propose GraphScale, a scalable graph processing framework for FPGAs. For the first time, Graph-Scale combines multi-channel memory with asynchronous graph processing (i. e., for fast convergence on results) and a com-pressed graph representation (i. e., for efficient usage of memory bandwidth and reduced memory footprint). GraphScale solves common graph problems like breadth-first search, PageRank, and weakly -connected components through modular user-defined functions, a novel two-dimensional partitioning scheme, and a high-performance two-level crossbar design.","PeriodicalId":380116,"journal":{"name":"2022 32nd International Conference on Field-Programmable Logic and Applications (FPL)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"GraphScale: Scalable Bandwidth-Efficient Graph Processing on FPGAs\",\"authors\":\"Jonas Dann, Daniel Ritter, H. Fröning\",\"doi\":\"10.1109/FPL57034.2022.00016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent advances in graph processing on FPGAs promise to alleviate performance bottlenecks with irregular memory access patterns. Such bottlenecks challenge performance for a growing number of important application areas like machine learning and data analytics. While FPGAs denote a promising solution through flexible memory hierarchies and massive parallelism, we argue that current graph processing accelerators either use the off-chip memory bandwidth inefficiently or do not scale well across memory channels. In this work, we propose GraphScale, a scalable graph processing framework for FPGAs. For the first time, Graph-Scale combines multi-channel memory with asynchronous graph processing (i. e., for fast convergence on results) and a com-pressed graph representation (i. e., for efficient usage of memory bandwidth and reduced memory footprint). GraphScale solves common graph problems like breadth-first search, PageRank, and weakly -connected components through modular user-defined functions, a novel two-dimensional partitioning scheme, and a high-performance two-level crossbar design.\",\"PeriodicalId\":380116,\"journal\":{\"name\":\"2022 32nd International Conference on Field-Programmable Logic and Applications (FPL)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 32nd International Conference on Field-Programmable Logic and Applications (FPL)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FPL57034.2022.00016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 32nd International Conference on Field-Programmable Logic and Applications (FPL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FPL57034.2022.00016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

fpga图形处理的最新进展有望缓解不规则内存访问模式带来的性能瓶颈。这些瓶颈挑战了越来越多的重要应用领域的性能,如机器学习和数据分析。虽然fpga通过灵活的内存层次结构和大规模并行性表示有前途的解决方案,但我们认为当前的图形处理加速器要么低效地使用片外内存带宽,要么不能很好地跨内存通道扩展。在这项工作中,我们提出了GraphScale,一个可扩展的fpga图形处理框架。graph - scale首次将多通道内存与异步图形处理(即,为了快速收敛结果)和压缩图形表示(即,为了有效使用内存带宽和减少内存占用)相结合。GraphScale通过模块化的用户定义函数、新颖的二维分区方案和高性能的两级交叉设计,解决了常见的图问题,如宽度优先搜索、PageRank和弱连接组件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
GraphScale: Scalable Bandwidth-Efficient Graph Processing on FPGAs
Recent advances in graph processing on FPGAs promise to alleviate performance bottlenecks with irregular memory access patterns. Such bottlenecks challenge performance for a growing number of important application areas like machine learning and data analytics. While FPGAs denote a promising solution through flexible memory hierarchies and massive parallelism, we argue that current graph processing accelerators either use the off-chip memory bandwidth inefficiently or do not scale well across memory channels. In this work, we propose GraphScale, a scalable graph processing framework for FPGAs. For the first time, Graph-Scale combines multi-channel memory with asynchronous graph processing (i. e., for fast convergence on results) and a com-pressed graph representation (i. e., for efficient usage of memory bandwidth and reduced memory footprint). GraphScale solves common graph problems like breadth-first search, PageRank, and weakly -connected components through modular user-defined functions, a novel two-dimensional partitioning scheme, and a high-performance two-level crossbar design.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信