基于mel-frequency倒谱系数编码的单音素识别神经网络

Dino Kosic
{"title":"基于mel-frequency倒谱系数编码的单音素识别神经网络","authors":"Dino Kosic","doi":"10.1109/NEUREL.2010.5644071","DOIUrl":null,"url":null,"abstract":"This paper proposes novel approach in coding single phonemes based on mel-frequency cepstral coefficients (MFCC) in order to simplify the neural network used to recognize those phonemes. The efficiency and effectiveness of proposed algorithm are demonstrated for both male and female speakers.","PeriodicalId":227890,"journal":{"name":"10th Symposium on Neural Network Applications in Electrical Engineering","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Neural network for single phoneme recognition based on mel-frequency cepstral coefficients coding\",\"authors\":\"Dino Kosic\",\"doi\":\"10.1109/NEUREL.2010.5644071\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes novel approach in coding single phonemes based on mel-frequency cepstral coefficients (MFCC) in order to simplify the neural network used to recognize those phonemes. The efficiency and effectiveness of proposed algorithm are demonstrated for both male and female speakers.\",\"PeriodicalId\":227890,\"journal\":{\"name\":\"10th Symposium on Neural Network Applications in Electrical Engineering\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"10th Symposium on Neural Network Applications in Electrical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NEUREL.2010.5644071\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"10th Symposium on Neural Network Applications in Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEUREL.2010.5644071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种基于mel-frequency倒谱系数(MFCC)的单音素编码方法,以简化用于识别单音素的神经网络。针对男性和女性说话者,验证了该算法的有效性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neural network for single phoneme recognition based on mel-frequency cepstral coefficients coding
This paper proposes novel approach in coding single phonemes based on mel-frequency cepstral coefficients (MFCC) in order to simplify the neural network used to recognize those phonemes. The efficiency and effectiveness of proposed algorithm are demonstrated for both male and female speakers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信